

Steel Disc Couplings

RINGFEDER® TND

Welcome

Aerospace

Process

Movement

Energy

Extraction

Your system supplier for every aspect of power transmission

We say what we mean and mean what we say.

We see things from our customers' perspective.

We are considerate of our employees and their families as well as of our environment and society.

RINGFEDER POWER TRANSMISSION is the global market leader in the niche markets of drive technology and is well regarded for its customer-specific, application-oriented solutions that ensure excellent and failure-free operation for its clients. We offer locking devices, damping technology and couplings for OEMs but also for the final customer under our strong brand name RINGFEDER®.

We do not only provide competent advice to our customers on the basis of our 90 years of experience but also develop innovative ideas in cooperation with them. This is part of our aspiration to be a **Partner for Performance**.

Around the power transmission we promise

- Excellent know-how for our challenging customers
- Best cost-benefit ratio
- Short reaction times and a high product availability

Your projects are our drive

Know-how: Over 90 years of expertise.

Rely on decades of engineering expertise from the inventor of the friction spring. As an expert in drive and damping technology, we are your reliable partner wherever forces are at work. Be it the permanent transfer of very high torques due to non-positive or positive connections or the absorption and trapping of extreme energies to protect expensive constructions.

Your expert partner:

From development to the finished product.

We accompany you through to the successful completion of your project. Beginning with the development phase of your project, we offer our know-how and professional solutions. By working together with global market leaders and as an international supplier of outstanding products and special solutions, we are a reliable partner for you.

Online calculation program:

Always find the right solution.

In response to the complex requirements involved in the correct selection and design of the required products under practical conditions, we have developed our online calculation program. Engineers and experts are able to calculate transferable torques and other important values, taking into account various parameters. Visit our website **www.ringfeder.com!**

On-site worldwide:

We are there for you. Anytime, anywhere.

With our locations in Germany, the Czech Republic, the USA, Brazil, China and India as well as a worldwide service and partner network, we are there for you around the clock. This ensures our support for the successful completion of your projects at any time.

Steel Disc Couplings RINGFEDER® TND

Torsionally rigid, absolutely backlash-free RINGFEDER® TND Steel Disc Couplings are suitable for the most diverse applications and particularly ideal for all drive tasks requiring freedom from wear and maintenance as well as excellent misalignment compensation and positioning accuracy. The core component of these powerful couplings are disc packs developed on the basis of in-depth FEM analysis. They consist of multiple circular, torsionally flexible single discs made of stainless spring steel which are connected by means of high-precision sleeves to form a compact unit. High-strength fitting screws alternately connect the disc packs, if necessary via mounted spacers, with the input-side and output-side coupling hub, so that the required torque is transmitted reliably, precisely and safely by the steel discs which are loaded by tension and compression. The high-precision sleeves with their specifically produced relief grooves decisively contribute to minimizing load peaks that mainly affect the outer discs when shaft misalignments occur.

Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) for increased compensation capability at occuring shaft misalignments, and the type HT (High Torque) with larger power density for higher requirements on transmissible torque. Thanks to the unitized design of this series and the extensive, highly flexible modular system, including various hub types, mounting options as well as spacer variants and lengths, there is always one coupling version available that is optimally suited for the individual application of our users. Moreover, customized special solutions can also be realized at short delivery times in specific case of need.

TND Type	TND HSH	TND HDH	TND XSX	TND XDX	TND HDV	TND VDV	TND OCO	TND QCQ
Available Sizes	1	1		7		9	4	2
Transmissible Torque								
HD disc pack	170-130),000 Nm	750-36	5,000 Nm	170-36	i,000 Nm	170-1,350 Nm	750-1,350 Nm
HT disc pack	230-44	,000 Nm	1,050-4	4,000 Nm	230-44	,000 Nm	230-1,750 Nm	1,050-1,750 Nr
Compensation of Shaft Misalignment								
Angular			(•	(•		
Axial			(•		•		
Radial		•		•				
Hub Type								
Standard hubs with keyway					•		•	
Inverted hubs with keyway					•	•		
Hubs with shrink discs			(•				•
Spacer Variant								
Without	•		•					
Compact							(
Standard lengths		•		•		•		
Custom lengths up to 3 meters		•		•	(•		

Disc packs of the HT type are not equally available for all coupling sizes.

One Coupling Series, Numerous Advantages

Zero Backlash

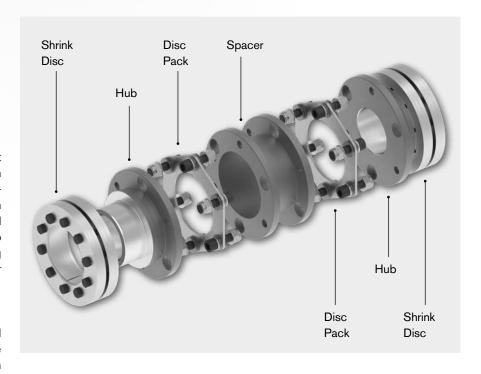
RINGFEDER® Steel Disc Couplings transmit the required torque in both directions with zero backlash – an indispensable precondition for their use in machines and plants with synchronous operation, frequent starts and stops or reversing operation. They are also the perfect choice for applications requiring the highest positioning accuracies and for variable-speed drives.

Torsional Stiffness

The premium-quality all-steel construction and the optimal design of the disc packs, made of corrosion-resistant spring steel, ensure an

outstanding torsional stiffness. This makes RINGFEDER® Steel Disc Couplings particularly designated for use in drive lines running at very high speeds and accelerations.

Misalignment Compensation


The FEM-optimized high-strength steel disc packs as well as their reliable attachment to the coupling hubs and possible spacers not only ensure extremely precise torque transmission by means of a combination of frictional and positive locking. They also effectively compensate for angular, axial, and, depending on the coupling type, radial shaft misalignment with minimum restoring forces.

Running Accuracy

First-class material quality combined with advanced machining processes at very tight production tolerances and a compact design, ensure the highest concentricity accuracies resulting in a particularly smooth and quiet running behavior at low vibration levels – even in drive applications involving enormous rotational speeds or irregular rotational forces.

Freedom from Wear and Maintenance

Provided that the stated selection and operation criteria are adhered to, RINGFEDER® Steel Disc Couplings are not subject to wear and do not require cleaning or lubrication. When properly in-

stalled, they are expected to have a virtually infinite service life. Their superior operational reliability precludes cost-intensive repairs and plant downtimes.

Temperature Resistance

Thanks to their all-steel construction and the resulting resilience, RINGFEDER® Steel Disc Couplings impress with maximum performance and reliability, even under extreme thermal loads. They can be installed in temperatures ranging from -20 °C to 240 °C and are, therefore, also suitable for use in high-temperature pump systems.

RINGFEDER® Steel Disc Couplings can of course be supplied in compliance with ATEX according to Product Directive 2014/34/EU and DIN EN ISO 80079-36:2016 if required.

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The users are obligated to determine whether the represented products meet their requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.

Coupling Configuration

From the outset, the RINGFEDER® TND series has been designed as a highly flexible modular system so that customers will always benefit from a coupling solution that is optimally suited to their specific application requirements. Customized special designs made-to-order which go beyond the individualization and selection options of the standard coupling types offered can thus be realized efficiently upon request. Generally, every coupling type is composed of an input-side

and output-side coupling hub as well as a connecting element that is either embodied by a single disc pack or by a spacer with two disc packs attached on both sides. The modular design principle and the resulting combination possibilities are also reflected in the denomination of the different coupling types: The three-letter name of a specific coupling type is derived from the respective manifestation of both the hubs and the connecting elements.

Coupling Hubs

RINGFEDER® Steel Disc Couplings comprise an input-side and output-side coupling hub of various construction types. Depending on the type, the hubs are mounted onto the shafts by either using keyways or RINGFEDER® Shrink Discs. The conventionally and thus typically used hub type is the standard hub designated by the letter H. If the hub diameter is reduced such that the hub is inverted when mounted and is hence hidden in the spacer, this hub type is designated with the letter V. The shaft-hub connection is established by a keyway for both H-Hubs and V-Hubs..

As shafts with very smooth surfaces are increasingly being used in today's compact gear units, a higher contact pressure of the hub onto the shaft is required to ensure safe and reliable torque transmission by frictional locking. To this end, the back side of the H-Hubs

is specifically prepared by suitable machining to be equipped with high-quality RINGFEDER® Shrink Discs. The resulting hub type is designated with the letter X. The specific assignment of three-part shrink discs of the RfN 4061 series to the individual coupling sizes allows for quick and easy selection of a suitable shrink disc.

In the case of couplings with a short length and a compact-spacer, two disc packs are fastened to the spacer by means of longer fitting screws that pass through the spacer. For geometrical reasons, this special kind of screw connection necessitates an opening of the hub flanges. Depending on the type of the shaft-hub connection, these hubs are either designated with the letter O (connection by keyway) or with the letter O (connection by RINGFEDER® Shrink Disc).

Hub H Standard Hub

Hub V Inverted Hub

Hub OStandard Hub with
Open Flange

Hub XHub with Shrink Disc

Hub Q
Hub with Open Flange
and Shrink Disc

Connecting Elements

Depending on the coupling type, either a single disc pack or spacers of different variants with two disc packs screwed to them on both sides serve as connecting elements between the hubs. Single disc packs are designated with the letter S. Spacers with the double number of disc packs are designated with the letters D or C respectively.

Coupling types with a single disc pack have single-jointed designs and are only capable of compensating angular and axial shaft misalignments between the connected aggregates, whereas double-jointed designs with two disc packs can also accommodate

radial misalignments. Spacers with the designation D are available in various standard lengths as well as customized special lengths of up to 3 meters which allow for the adaptation to prevailing site conditions and provide for the ability to bridge even very long shaft distances. The designation D describes a particularly short, compact-spacer that can be mounted and dismounted radially.

In coupling types equipped with either a spacer D or C, one disc pack each is alternately connected to the spacer and one coupling hub, thus achieving the function of a double-cardanic system.

Disc Packs

The FEM-optimized disc packs are the characteristic and functional key element of the RINGFEDER® Steel Disc Couplings. The packs are comprised of multiple circular single discs of the same thickness made of corrosion resistant spring steel. These discs are firmly connected to form a compact unit by means of precision sleeves. To reduce stress peaks that are mainly applied to the outer discs when shaft misalignments occur, the precision sleeves are equipped with specially produced relief grooves. High-strength fitting screws alternately connect the disc packs with the coupling hubs and any mounted spacers. The bolt circle, the number of screwing points and the width of the disc packs determine the level of torque that can be transmitted, whereas the distance of the disc packs to each other and the thickness of the single discs define the capability to compensate for shaft misalignments. Depending on the preference and application-specific requirements, customers may choose from two different disc pack types as a function of the coupling size:

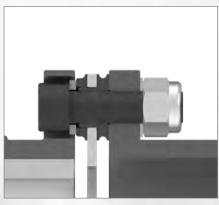
The type HD (High Deflection) with thin single discs for increased compensation capability at occuring shaft misalignment. Up to and including the coupling size 169, this type allows for continuous operation at an angular misalignment of up to 1.0 degrees under consideration of the coupling dimensioning details.

The type HT (High Torque) is used if higher requirements are placed on the torque that can be transmitted. By virtue of thicker single discs, the torque capacity is increased by up to 30 % and a higher power density is hence obtained. With due consideration of the coupling dimensioning details, continuous operation at an angular misalignment of maximal 0.7 degrees is possible for coupling sizes up to and including 169.

6 Screwing Points Size 47-169

8 Screwing Points Size 205-316

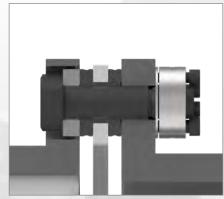
Spacer D with 2 Disc Packs


Compact-Spacer C with 2 Disc Packs

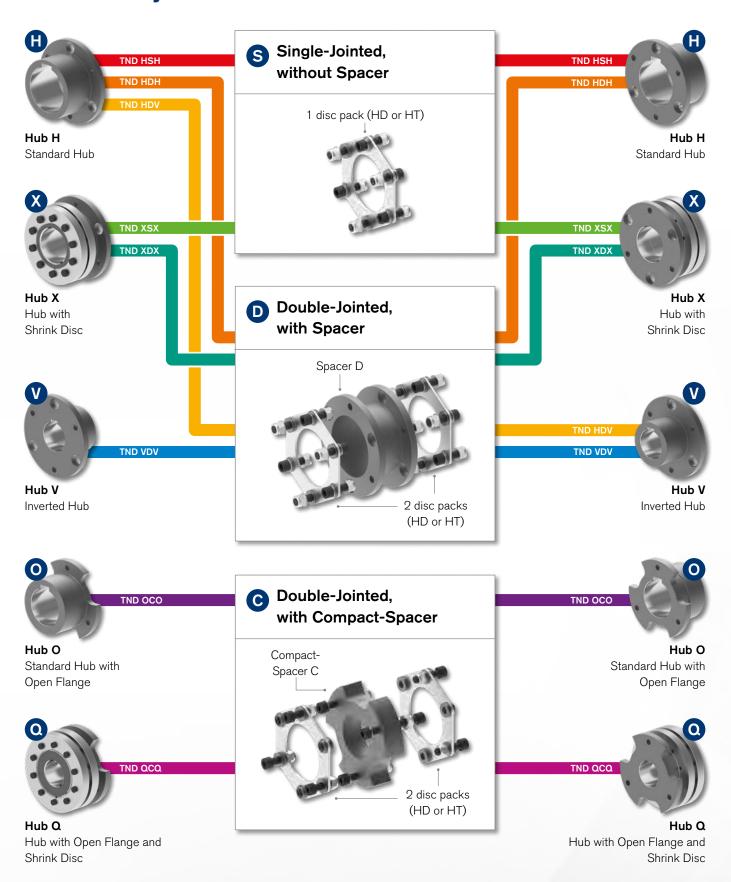
Screwing

The disc packs are typically connected by means of high-strength special screws. Depending on the coupling size, hexagon socket screws or hexagon head screws are used.

The contact pressure of the disc pack on the other coupling components, which is generated by the screw tightening torque, provides for friction-locked transmission of the required torque. It is therefore necessary that the contact surfaces are dry and free from any matter like preservative agents or paint. Up to and including the coupling size 98, hardened washers are fitted below the screw heads. From size 118 up, such washers are also used underneath the self-locking nuts.


In ambient temperatures above 80°C, the typically used self-locking nuts with plastic insert have to be replaced by all-steel nuts.

Hexagon Socket Screws Size 47-141



Hexagon Head Screws Size 169-254

Hexagon Socket Screws with Special Nut Size 262-316

Modular System

The smart modular system of the RINGFEDER® TND series guarantees users maximum flexibility and customizability to fulfil the specific requirements of their individual drive task. By virtue of the various combination possibilities and multiple extension options, further coupling types are realizable in addition to those depicted

above. These include other hub combinations, the replacement of hubs by connecting flanges or functional supplements like brake discs or brake drums as well as anti-flail devices. Furthermore, the couplings can also be installed vertically by using simple supports.

Coupling Dimensioning

Selection Guide

The selection of the correct coupling size is based on the torque to be transmitted and the given shaft dimensions. In addition, other conditions of the specific application situation have to be considered, e.g. operating speed, shaft misalignments and the need for spacers to accommodate larger shaft distances.

Always make sure that the specified limit values are never exceeded at any operating condition. Should you have questions or need technical support, please contact our experts in Engineering and Sales.

The nominal torque T_{KN} of the RINGFEDER® TND Steel Disc Couplings can be transmitted continuously if the specified selection and operating criteria are met. Coupling dimensioning is based

on the nominal torque T_N and the maximum torque T_{max} of the machinery.

1. Calculate the nominal torque of the machine to be transmitted T_N

Equation 1)

 $T_{N} = 9,550 \cdot P_{N} / n_{N}$

 T_N = Nominal torque of machine [Nm] P_N = Machine power [kW] n_N = Operating speed [1/min]

2. Determine the required nominal torque for the coupling T_{KN}

Equation 2)

 $T_{KN} \ge T_N \cdot S_{\vartheta} \cdot S_f$

 T_{KN} = Nominal torque of coupling [Nm] acc. to data in the Tech Paper T_N = Nominal torque of machine [Nm] acc. to Equation 1) S_{ϑ} = Temperature factor [-] acc. to Table 1) S_f = Service factor [-] $S_A \cdot S_L$

 $\mathbf{S}_{\mathbf{A}}$ = Load factor on drive side $\mathbf{S}_{\mathbf{L}}$ = Load factor of output side

To prevent damage to the self-locking nuts of the screwing of the disc pack, ambient temperatures above 80 °C have to be communicated to RINGFEDER POWER TRANSMISSION beforehand. Specifically designed coupling versions are available for temperatures below -20 °C and above 240 °C.

Table 1: Temperature Factor S_∂

Ambient Temperature Range ϑ [°C]	Temperature Factor ${\sf S}_{\vartheta}$
-20 °C < ϑ < 160 °C	1.0
160 °C < ♂ < 190 °C	1.1
190 °C < ♂ < 240 °C	1.3

 S_A is the load factor for the input side. It defaults to $S_A = 1$ for electric motor drives. $S_A > 1$ applies to drives by combustion engines and it is recommended to check the selection of the coupling size by means of a detailed torsional vibration analysis. Please contact the expert team of RINGFEDER POWER TRANSMISSION for further guidance.

Table 2: Load Factor Output Side

Torque Characteristics at Operating Point on Output Side	Torque Curve	Min. Load Factor S _L
Constant, uniform torque load, without torque variations	T (Nm)	1.1
Uniform with little torque variations; slight shocks	T (Nm)	1.5
Non-uniform, also API 671, API 610 moderate shocks	T (Nm)	1.75
Non-uniform, fluctuating, heavy shocks	T (Nim)	2
Other torque patterns and reversing operation	T (Nm)	2.5

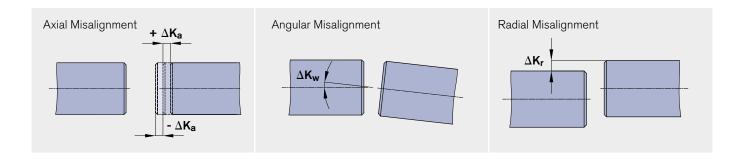
3. Check the impact of short-term torque peaks acting on the coupling

Equation 3)

$$1.75 \cdot T_{KN} = T_{Kmax} > T_{max} \cdot S_{\vartheta} \cdot S_{Z}$$

 T_{KN} = Nominal torque of coupling [Nm] acc. to data in the Tech Paper

 T_{max} = Max. torque of machine* [Nm]


* e.g. at the start of an electric motor: $T_{max} = T_{Kipp}$ $T_{Kipp} = Tipping torque by starting with directly engaged asynchronous motor, e.g. <math>T_{Kipp} \sim 2 \cdot T_N$; please observe the specific details provided by the motor supplier.

 S_Z = 1.5 is applicable for reversing torque; otherwise: S_Z = 1

4. Make certain that the coupling is capable of handling the occurring shaft misalignments

Existing or expected angular, axial and radial shaft misalignments shall not exceed the maximum values as specified in the Tech Papers of the individual coupling types. Coupling types with one single disc pack are capable of compensating angular and axial shaft misalignments. Couplings equipped with two disc packs can also compensate radial shaft misalignment. The individual misalignment values are interdependent; to ensure safe and continuous

transmission of the required torque, the maximum misalignment values may not occur simultaneously. If one of the misalignment values is close to the permissible limit value, this will have an effect on the misalignment values in other directions and on the torque that can be transmitted. The selection of a coupling with larger misalignment capacities is therefore recommended.

4.1 Couplings with one disc pack (e.g. coupling type TND HSH)

Couplings with one single disc pack are capable of accommodating axial and angular misalignment, but not radial shaft misalignment. Accordingly, the following equation applies:

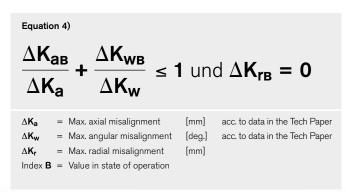
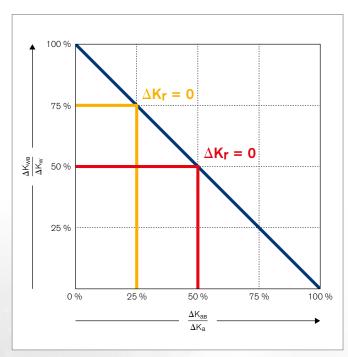
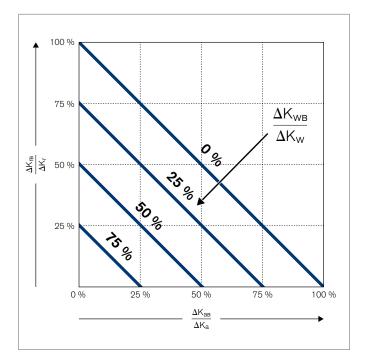



Diagram 1: Miasalignment Chart for Couplings with one Disc Pack (Single-Jointed Design)



4.2 Couplings with two disk packs (e.g. coupling type TND HDH)

Couplings with two disc packs are able to compensate for axial, angular and radial shaft misalignment. Accordingly, the following equation applies:

Equation 5) $\frac{\Delta K_{aB}}{\Delta K_{a}} + \frac{\Delta K_{wB}}{\Delta K_{w}} + \frac{\Delta K_{rB}}{\Delta K_{r}} \leq 1$ $\Delta K_{a} = \text{Max. axial misalignment} \qquad \text{[mm]} \qquad \text{acc. to data in the Tech Paper}$ $\Delta K_{w} = \text{Max. angular misalignment} \qquad \text{[deg.]} \qquad \text{acc. to data in the Tech Paper}$ $\Delta K_{r} = \text{Max. radial misalignment as} \qquad \text{[mm]} \qquad \text{acc. to data in the Tech Paper}$ $\Delta K_{r} = \text{Max. radial misalignment as} \qquad \text{[mm]} \qquad \text{acc. to data in the Tech Paper}$ $\Delta K_{r} = \text{Max. radial misalignment as} \qquad \text{[mm]} \qquad \text{acc. to data in the Tech Paper}$ $\Delta K_{r} = \text{Max. radial misalignment as} \qquad \text{[mm]} \qquad \text{acc. to data in the Tech Paper}$ $\Delta K_{r} = \text{Max. radial misalignment as} \qquad \text{[mm]} \qquad \text{acc. to data in the Tech Paper}$

Diagram 2: Miasalignment Chart for Couplings with two Disc Packs (Double-Jointed Design)

The following equation applies per disc pack:

Equation 6)

$$\Delta K_{WRB} \leq 1/2 \cdot \Delta K_W - \Delta K_{WB}$$

 ΔK_{w} = Max. angular misalignment [deg.] acc. to data in the Tech Paper ΔK_{wB} = Machine-related angular misalignment in state of operation

 $\Delta K_{WRB} =$ Angle due to radial misalignment [deg.]

To calculate the maximum radial misalignment which can be continuously transmitted by the coupling, the lowest value of $\Delta K_{\text{WRB-min}}$ is used to determine $\Delta K_{\text{TB}}.$

Equation 7)

$$\Delta K_{\text{rrb}} = \tan (\Delta K_{\text{wrb-min}}) \cdot (E-H_3)$$

 ${f E} = {f Distance}$ between the hubs [mm] acc. to data in the Tech Paper ${f H_3} = {f Width}$ of the disc pack [mm] acc. to data in the Tech Paper

5. Check the hub bores and operating speeds to prevent exceeding permissible maximum values

Arrangement of the coupling components

The coupling hubs have to be mounted onto the shafts to be connected in accordance with the respective coupling type. It is recommended to mount the coupling hubs flush with the shaft ends to establish the most solid shaft-hub connection.

Bores

The values for d_{1kmax}/d_{2kmax} (max. bore diameter) indicated in the Tech Papers for the individual coupling types apply to keyed connections according to DIN 6885-1. These values may only be exceeded upon prior review and approval by RINGFEDER POWER TRANSMISSION. The maximum possible bore diameters for connections with square keys according to ANSI B17.1 are to be reduced upon consultation with RINGFEDER POWER TRANSMISSION.

In order to achieve sufficient concentricity, the bore fit must be selected so that the shaft tolerance pairing results in a tight fit or interference fit (e.g. H7/m6) or tighter. Detailed data needs to be provided for hydraulically fitted shaft-hub connections.

Fastening on the shafts

RINGFEDER® Steel Disc Couplings with standard or inverted hubs come with keyways according to DIN 6885-1 and a keyway width tolerance P9 as standard (tolerance JS9 upon customer specification). In addition, axial securing, e.g. via set screws or distance rings, needs to be provided for use with longer shaft ends. Keyways according to ANSI B17.1, keyways with special dimensions or other keyway tolerances can also be realized upon request.

For couplings with hubs of the designation X and Q, the hub is fastened by RINGFEDER® Shrink Discs of the three-part series RfN 4061 which are placed on the back of the hubs. By tightening the high-strength locking screws, the tapered thrust rings of the shrink disc are axially clamped against each other on an inner ring, so that pressure is applied from outside via the hub onto the joint between shaft and hub. This provides for backlash-free transmission of the torque by frictional locking. The transmissible torque of these coupling types can be obtained from their corresponding Tech Papers.

6. Check whether dynamic effects need to be considered

Bearing of shaft ends

Bearings are required for the shafts ends to be connected directly in front of and behind the coupling.

Balancing

On account of the extremely high manufacturing precision of the coupling components, balancing of the coupling is only required for applications involving very high operating speeds or because of sensitivity of the driving and driven units. From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.

Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs are balanced half key (before grooving) and spacers are balanced without screwed-on disc packs.

Critical operating speed

On account of the coupling construction, the fastening of a spacer between two disc packs will result in a system susceptible to dynamic excitation. In order to prevent the operating accuracy from being adversely affected by axial vibrations, the bending critical speed has to be verified in the case of operating speeds of 3,500 1/min and higher, and spacer lengths of 1.2 meters and longer.

Important!

It is mandatory to observe the stated selection and operation criteria as well as the instructions contained in the respective assembly and operation manuals. Should you have any questions or need technical support, please consult our experts in Sales and Engineering.

Dimensioning Examples

Example 1

A RINGFEDER® Steel Disc Coupling is required for an agitator operating in an ambient temperature of 180 °C. An electric motor type 315M with an input shaft diameter of 80 mm drives the output shaft, diameter 85 mm, with a power of 132 kW and a speed of 1,460 1/min. The distance between the shaft ends is 100 mm and the load should be transmitted via a keyed connection.

Machine power P _N =	132 kW for the el. motor type 315 M	
Operating speed n _N =	1,460 1/min	
Nominal torque of machine T _N =	9,550 · P _N / n _N = 9,550 · 132 / 1,460 = 864 Nm	acc. to Equation 1)
Ambient temperature ϑ =	180 °C	acc. to Table 1)
— → Temperature factor S _ϑ =	1.1	acc. to Table 1)
——► Load factor S _L =	non-uniform torque curve, moderate shocks = 1.75	acc. to Table 2)
Required nominal torque of coupling T_{KN} =	$T_N \cdot S_{\vartheta} \cdot S_f = 846 \text{ Nm} \cdot 1.1 \cdot 1.75 = 1,629 \text{ Nm}$	acc. to Equation 2)

For non-reversing torque S _Z	1	
Ambient temperature ϑ =	180°C	acc. to Table 1)
—► Temperature factor S _∂ =	1,1	acc. to Table 1)
Max. torque of machine T _{max} =	$T_{Kipp} = 2.5 \cdot T_N = 2.5 \cdot 864 \text{ Nm} = 2,115 \text{ Nm}$	
Max. torque T _{Kmax} =	2,115 Nm · 1 · 1.1 = 2,330 Nm	acc. to Equation 3)

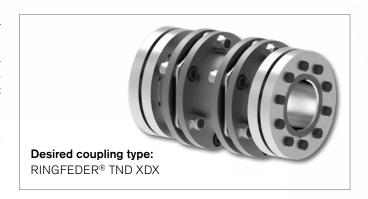
Since a keyed connection is requested and because the shaft distance has to be bridged by a spacer, the steel disc coupling type

TND HDH is selected. To match the shaft distance of 100 mm, a spacer length of 100 mm (E = 100 mm) is required.

Coupling Selection: TND HDH, Size 118, Spacer Length E = 100 mm		
T _{KN} Drive = 1,629 Nm ≤ 2,400 Nm = T _{KN} Coupling		
$T_{\text{Kmax}} 2,330 \text{ Nm} \le 1.75 \cdot 2,400 \text{ Nm} = 4,200 \text{ Nm}$	acc. to Equation 3)	
n _N 1,460 1/min ≤ 5,250 1/min		

The shafts are aligned according to the below mentioned misalignment values which are expected to occur during operation. On this basis, the utilization of the maximum possible misalignment com-

pensation capacity is verified. The operating speed of 1,460 1/min corresponds to a peripheral speed of 12.7 m/s. Therefore, no balancing will be necessary.


Misalignment values in state of operation	$\Delta K_{\rm aB} = 0.5 \ \text{mm}$ $\Delta K_{\rm WB} = 0.5^{\circ}$ $\Delta K_{\rm rB} = 0.7 \ \text{mm}$	
Verification of the misalignment values	$0.5 \text{ mm} / 2.4 \text{ mm} + 0.5^{\circ} / 2^{\circ} + 0.7 \text{ mm} / 1.4 \text{ mm} = 0.95 \le 1$	acc. to Equation 5)

Verification of the dimensioning result

	Machine Data	Coupling Data
Nominal torque	1,629 Nm (incl. safety factor)	2,400 Nm
Maximum torque	2,330 Nm (incl. safety factor)	4,200 Nm
Speed	1,460 1/min	max. 5,250 1/min
Shaft diameter, motor	80 mm	max. 85 mm
Shaft diameter, agitator	85 mm	max. 85 mm

Example 2

A RINGFEDER® Steel Disc Coupling is intended to be used for the drive of a kneading machine. The gear unit provides a nominal torque of 12,000 Nm at a speed of 120 1/min. The input shaft has a diameter of 150 mm and the output shaft has a diameter of 135 mm. The shaft tolerance is g6 each. The distance between the shaft ends amounts to 300 mm. The maximum torque of the machine is 30,000 Nm. Further requirements are reversing operation and an ambient temperature of 110 °C. Shrink discs are to be used for the shaft-hub connection on both sides.

Operating speed n_N =	120 1/min	
Nominal torque of machine T _N =	12,000 Nm	
Ambient temperature ϑ =	110 °C	acc. to Table 1)
— ▶ Temperature factor S _ϑ =	1	acc. to Table 1)
—► Load factor S _L =	for reversing operation = 2.5	acc. to Table 2)
Required nominal torque of coupling T_{KN} =	$T_N \cdot S_{\vartheta} \cdot S_f = 12.000 \text{ Nm} \cdot 1 \cdot 2,5 = 30.000 \text{ Nm}$	acc. to Equation 2)

For reversing torque S _Z	1.5	
Ambient temperature ϑ =	110 <i>°</i> C	acc. to Table 1)
— → Temperature factor S _ϑ =	1	acc. to Table 1)
Max. torque of machine T_{max} =	30,000 Nm	
Max. torque T _{Kmax} =	30,000 Nm · 1 · 1.5 = 45,000 Nm	acc. to Equation 3)

On account of the required shrink disc connection and use of a spacer to bridge the shaft distance, the steel disc coupling type TND XDX

size 254 with HD disc pack is selected. To match the shaft distance of 300 mm, a spacer length of 300 mm (E = 300 mm) is chosen.

Coupling Selection: TND XDX, Size 254, Spacer Length E = 300 mm		
T_{KN} drive = 30,000 Nm <= 36,000 Nm = T_{KN} coupling		
$T_{\text{Kmax}} 45,000 \le 1.75 \cdot 36,000 = 63,000 \text{ Nm}$	acc. to equation 3)	
n _N 120 1/min ≤ 2,100 1/min		

The shafts will be aligned according to the below mentioned misalignment values which are assumed to occur during operation. On this basis, the utilization of the maximum possible misalignment compensation capacity is verified.

Misalignment values in state of operation	$\Delta K_{AB} = 0.3 \text{ mm}$ $\Delta K_{WB} = 0.3^{\circ}$ $\Delta K_{rB} = 1.0 \text{ mm}$	
Verification of the misalignment values	$0.3 \text{ mm} / 2.2 \text{ mm} + 0.3^{\circ} / 1^{\circ} + 1 \text{ mm} / 2.2 \text{ mm} = 0.89 \le 1$	acc. to equation 5)

The sizes of the RINGFEDER® RfN 4061 Shrink Discs that match the respective coupling hubs are listed in the Tech Paper for the coupling type TND XDX. In this example, the size 200×350

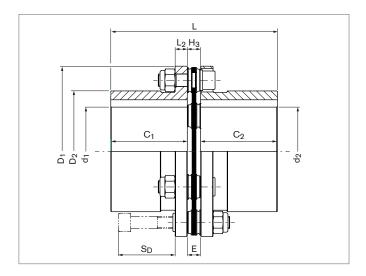
is selected for the input shaft (diameter 150 mm), and the size 185×330 mm for the output shaft (diameter 135 mm).

Transmissible torque T RfN 4061 185 x 330 with d = 135 mm	52,500 Nm
Transmissible torque T RfN 4061 200 x 350 with d = 150 mm	75,000 Nm

Verification of the dimensioning result

	Machine Data	Coupling Data
Nominal torque	12,000 Nm	36,000 Nm
Maximum torque	30,000 Nm	63,000 Nm
Speed	120 1/min	max. 2,100 1/min
Shaft diameter, motor	150 mm	max. 160 mm
Shaft diameter, kneader	135 mm	max. 160 mm
Shrink disc connection, motor	45,000 Nm	75,000 Nm
Shrink disc connection, kneader	45,000 Nm	52,000 Nm

In this case, the maximum torque T_{kmax} of the complete system is limited by the lower torque that can be transmitted by the shaft-hub-connection, and therefore is set to 52,500 Nm.



TAD TST

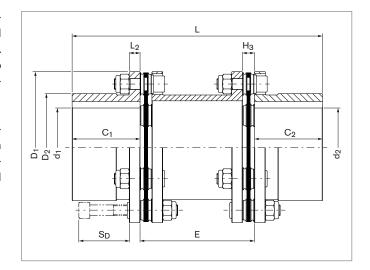
Standard Hubs, Single-Jointed, without Spacer

The type **RINGFEDER® TND HSH** is a torsionally stiff, backlash-free steel disc coupling consisting of two standard hubs H and one disc pack S alternately connected to the hubs by high-strength screws.

Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) as well as the type HT (High Torque). The single-jointed design with single disc pack compensates for angular and axial shaft misalignments.

Characteristics

- Completely backlash- and maintenance-free
- Highly effective compensation of angular and axial shaft misalignment
- Torsionally rigid with high torsional stiffness
- Low restoring forces in case of shaft misalignment due to optimum disc pack design
- Quick and easy realization of a double-cardanic setup by means of two couplings and one spacer
- Bore diameter d_{1/2} up to 215 mm
- \blacksquare Transmissible torque T_{KN} up to 130,000 Nm / T_{kmax} up to 220,000 Nm
- \blacksquare Rotational speeds n_{max} up to 12,200 1/min
- Efficient realization of customer-specific solutions at short delivery times thanks to modular design



Standard Hubs, Double-Jointed, with Spacer

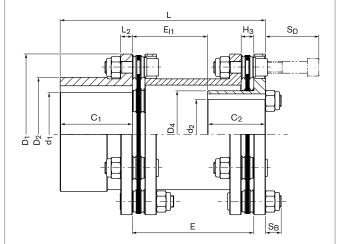
The type RINGFEDER® TND HDH is a torsionally stiff, backlash-free steel disc coupling consisting of two standard hubs H as well as a spacer D in standardized or individually customized length. Using high-strength screws, one disc pack each is connected to the spacer and one hub, thus achieving the function of a double-cardanic system.

Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) as well as the type HT (High Torque). The double-jointed design with two disc packs compensates for radial (adjustable via the spacer length), angular and axial shaft misalignments.

Characteristics

- Completely backlash- and maintenance-free
- Highly effective compensation of angular, axial and radial shaft misalignment
- Torsionally rigid with high torsional stiffness
- Low restoring forces in case of shaft misalignment due to optimum disc pack design
- Bridging of large shaft distances by means of spacers in various standard and freely customizable special lengths

- Bore diameter d_{1/2} up to 215 mm
- Transmissible torque T_{KN} up to 130,000 Nm / T_{kmax} up to 220,000 Nm
- Rotational speeds depending on spacer length n_{max} up to 12,200 1/min
- Efficient realization of customer-specific solutions at short delivery times thanks to modular design



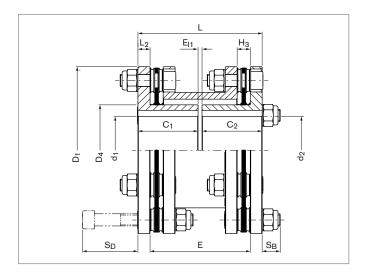
Combination of Standard Hub and Inverted Hub, Double-Jointed, with Spacer

The type RINGFEDER® TND HDV is a torsionally stiff, back-lash-free steel disc coupling consisting of a standard hub H and an inverted hub V, connected by a spacer D in standardized or individually customized length. Using high-strength screws, one disc pack each is connected to the spacer and one hub, thus achieving the function of a double-cardanic system.

Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) as well as the type HT (High Torque). The double-jointed design with two disc packs compensates for radial (adjustable via the spacer length), angular and axial shaft misalignments.

Characteristics

- Completely backlash- and maintenance-free
- Highly effective compensation of angular, axial and radial shaft misalignment
- Torsionally rigid with high torsional stiffness
- Low restoring forces in case of shaft misalignment due to optimum disc pack design
- Bridging of large shaft distances by means of spacers in various standard and freely customizable special lengths
- Bore diameter in standard hub H d₁ up to 175 mm, in inverted hub V d₂ up to 120 mm
- Transmissible torque T_{KN} up to 44,000 Nm / T_{kmax} up to 77,000 Nm
- Rotational speeds depending on spacer length n_{max} up to 12,200 1/min
- Efficient realization of customer-specific solutions at short delivery times thanks to modular design


ADA DNH

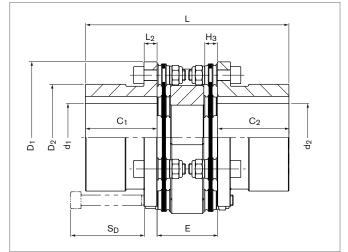
Further information on RINGFEDER® TND VDV on www.ringfeder.com

Inverted Hubs, Double-Jointed, with Spacer

The type RINGFEDER® TND VDV is a torsionally stiff, back-lash-free steel disc coupling consisting of two inverted hubs V, connected by a spacer D in standardized length. Using high-strength screws, one disc pack each is connected to the spacer and one hub, thus achieving the function of a double-cardanic system.

Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) as well as the type HT (High Torque). The double-jointed design with two disc packs compensates for radial (adjustable via the spacer length), angular and axial shaft misalignments. By utilizing the standard spacers, the largest possible disc pack distance and thus the largest possible radial misalignment is realized at minimum distance of the shafts to be connected.

Characteristics


- Completely backlash- and maintenance-free
- Highly effective compensation of angular, axial and radial shaft misalignment
- Torsionally rigid with high torsional stiffness
- Low restoring forces in case of shaft misalignment due to optimum disc pack design
- Bridging of large shaft distances by means of spacers in various standard lengths
- Maximum radial misalignment at minimum shaft distance
- Bore diameter d_{1/2} up to 120 mm
- Transmissible torque T_{KN} up to 44,000 Nm / T_{kmax} up to 77,000 Nm
- Rotational speeds depending on spacer length n_{max} up to 12,200 1/min
- Efficient realization of customer-specific solutions at short delivery times thanks to modular design

Standard Hubs with Open Flange, Double-Jointed, with Compact-Spacer

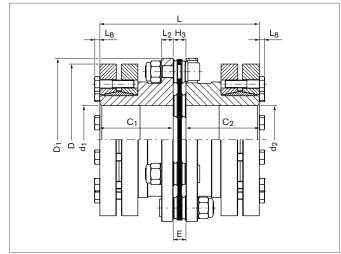
The type RINGFEDER® TND OCO is a torsionally stiff, backlash-free steel disc coupling consisting of two standard hubs with open flange O and a compact-spacer C that can be installed and removed radially. Using high-strength screws, one disc pack each is connected to the spacer and one hub, thus achieving the function of a double-cardanic system.

Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) as well as the type HT (High Torque). The double-jointed design with two disc packs compensates for angular, axial and radial shaft misalignments with minimum axial space requirement.

Characteristics

- Completely backlash- and maintenance-free
- Highly effective compensation of angular, axial and radial shaft misalignment
- Torsionally rigid with high torsional stiffness
- Low restoring forces in case of shaft misalignment due to optimum disc pack design
- Minimum shaft distance for standard hubs

- Radially install- and removeable compact-spacer
- Bore diameter d_{1/2} up to 65 mm
- Transmissible torque T_{KN} up to 1,750 Nm / T_{kmax} up to 3,000 Nm
- Rotational speeds depending on spacer length n_{max} up to 8,400 1/min
- Efficient realization of customer-specific solutions at short delivery times thanks to modular design


XSX ONE

Hubs with RINGFEDER® Shrink Discs, Single-Jointed, without Spacer

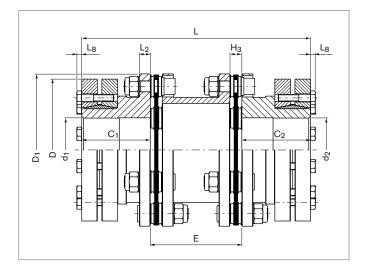
The type RINGFEDER® TND XSX is a torsionally stiff, backlash-free steel disc coupling consisting of two hubs X prepared to be equipped with shrink discs of the series RINGFEDER® RfN 4061 and one disc pack S alternately connected to the hubs by high-strength screws.

Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) as well as the type HT (High Torque). The single-jointed design with single disc pack compensates for angular and axial shaft misalignments.

A permanently backlash-free fixation of the coupling hubs on the shafts to be connected is realized by means of high-quality RINGFEDER® Shrink Discs.

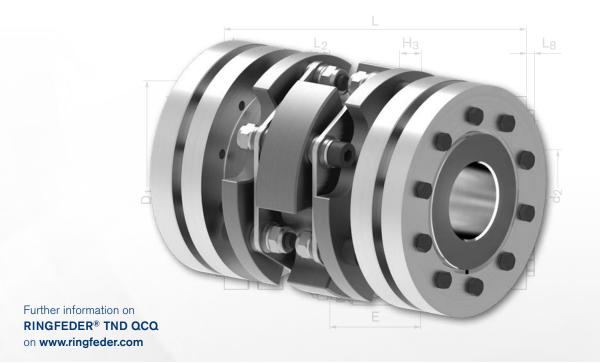
Characteristics

- Completely backlash- and maintenance-free
- Highly effective compensation of angular and axial shaft misalignment
- Torsionally rigid with high torsional stiffness
- Low restoring forces in case of shaft misalignment due to optimum disc pack design
- Quick and easy realization of a double-cardanic setup by means of two couplings and one spacer
- Simplified shrink disc selection thanks to RINGFEDER®
 Shrink Discs specifically assigned per coupling size
- Bore diameter d_{1/2} up to 160 mm
- \blacksquare Transmissible torque T_{KN} up to 44,000 Nm / T_{kmax} up to $77,\!000$ Nm
- Rotational speeds n_{max} up to 3,600 1/min
- Efficient realization of customer-specific solutions at short delivery times thanks to modular design



Hubs with RINGFEDER® Shrink Discs, Double-Jointed, with Spacer

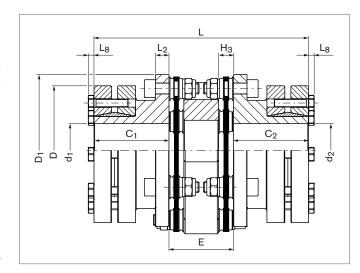
The type RINGFEDER® TND XDX is a torsionally stiff, backlash-free steel disc coupling consisting of two hubs X prepared to be equipped with shrink discs of the series RINGFEDER® RfN 4061 and a spacer D in standardized or individually customized length. Using high-strength screws, one disc pack each is connected to the spacer and one hub, thus achieving the function of a double-cardanic system.


Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) as well as the type HT (High Torque). The double-jointed design with two disc packs compensates for radial (adjustable via the spacer length), angular and axial shaft misalignments.

A permanently backlash-free fixation of the coupling hubs on the shafts to be connected is realized by means of high-quality RINGFEDER® Shrink Discs.

Characteristics

- Completely backlash- and maintenance-free
- Highly effective compensation of angular, axial and radial shaft misalignment
- Torsionally rigid with high torsional stiffness
- Low restoring forces in case of shaft misalignment due to optimum disc pack design
- Bridging of large shaft distances by means of spacers in various standard and freely customizable special lengths
- Simplified shrink disc selection thanks to RINGFEDER® Shrink Discs specifically assigned per coupling size
- Bore diameter d_{1/2} up to 160 mm
- \blacksquare Transmissible torque T_{KN} up to 44,000 Nm / T_{kmax} up to 77,000 Nm
- Rotational speeds depending on spacer length n_{max} up to 3,600 1/min
- Efficient realization of customer-specific solutions at short delivery times thanks to modular design


TND QCQ

Hubs with Open Flange and RINGFEDER® Shrink Discs, Double-Jointed, with Compact-Spacer

The type RINGFEDER® TND QCQ is a torsionally stiff, backlash-free steel disc coupling consisting of two hubs with open flange Q prepared to be equipped with shrink discs of the series RINGFEDER® RfN 4061 and a compact-spacer C that can be installed and removed radially. Using high-strength screws, one disc pack each is connected to the spacer and one hub, thus achieving the function of a double-cardanic system.

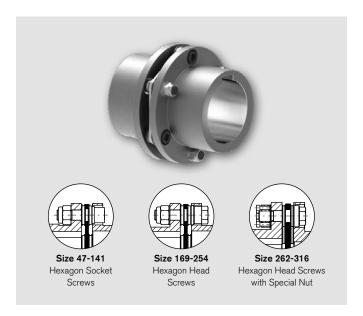
Depending on the coupling size, two different disc packs are available: The type HD (High Deflection) as well as the type HT (High Torque). The double-jointed design with two disc packs compensates for angular, axial and radial shaft misalignments with minimum axial space requirement.

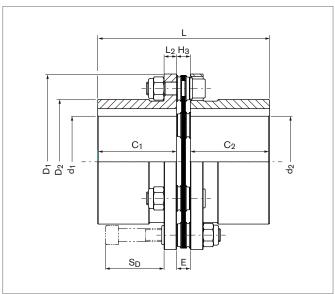
A permanently backlash-free fixation of the coupling hubs on the shafts to be connected is realized by means of high-quality RINGFEDER® Shrink Discs.

Characteristics

- Completely backlash- and maintenance-free
- Highly effective compensation of angular, axial and radial shaft misalignment
- Torsionally rigid with high torsional stiffness
- Low restoring forces in case of shaft misalignment due to optimum disc pack design
- Minimum shaft distance for standard hubs
- Radially install- and removeable compact-spacer

- Simplified shrink disc selection thanks to RINGFEDER® Shrink Discs specifically assigned per coupling size
- Bore diameter d_{1/2} up to 70 mm
- \blacksquare Transmissible torque T_{KN} up to 1,750 Nm / T_{kmax} up to 3,000 Nm
- Rotational speeds depending on spacer length n_{max} up to 3,600 1/min
- Efficient realization of customer-specific solutions at short delivery times thanks to modular design





EN Tech Paper 05.2022

Steel Disc Couplings RINGFEDER® TND HSH

Standard Hubs, Single-Jointed, without Spacer, Shaft-Hub Connection by Keyway

Size	T _{KN} HD ¹⁾	T _{KN} HT 1)	n _{max}	d _{pre} 3)	d _{1k} ;d _{2k} max ⁴⁾	C ₁ / C ₂	E	H ₃	D ₁	D ₂	L ₂	L	S _D	n _{Sc}
HSH	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Quantity
47	170	230	12200	10	32	39,5	7,5	7,5	70,5	47	5	86,5	24	6
63	320	420	9900	14	42	45	9	9	88	62,5	8	99	32	6
82	750	1050	7500	15	55	55	10,5	10,5	116	82	10	120,5	40	6
98	1350	1750	6200	19	65	60	12	12	140,5	98	11	132	47	6
118	2400	3000	5250	25	85	75	13	13	166,5	118	12	163	55	6
141	4000	5200	4400	30	95	90	15	15	198,5	141	14	195	64	6
169	6500	8500	3650	39	115	125	21	21	238	169	16	271	81	6
205	21000	26000	2950	59	140	160	28	28	295	205	22	348	112	8
254	36000	44000	2500	79	175	200	32,5	32,5	345	254	26	432,5	133	8
262	74000		2050	90	180	210	34	34	420	262	32	454	137	8
316	130000		1700	100	215	240	47	47	510	316	38	527	172	8

To continue see next page

EN

Tech Paper

05.2022

Steel Disc Couplings RINGFEDER® TND HSH

					Max. Permissible Misalignment ⁷⁾						
					ax	ial	ang	ular	radial		
Size	Gw _{SB} 6)	J _{SB} ⁶⁾	C _{Tdyn} HD	C _{Tdyn} HT	$\Delta K_a HD$	∆KaHT	∆K _w HD	∆K _w HT	∆K _r HD	∆K _r HT	
HSH	kg	10 ⁻³ kgm ²	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm	
47	1,3	0,5	0,173	0,184	0,5	0,3	1	0,7			
63	2,6	1,6	0,281	0,312	0,5	0,4	1	0,7			
82	5,6	5,9	0,637	0,743	0,7	0,4	1	0,7			
98	8,8	14	1,173	1,251	1	0,6	1	0,7			
118	15,4	35	2	2,082	1,2	0,8	1	0,7			
141	25,9	84	2,992	3,142	1,4	0,8	1	0,7			
169	50	230	5,269	6,586	1,5	1,2	1	0,7			
205	97,8	700	21,848	22,285	1,1	0,6	0,5	0,4			
254	171,2	1750	37,204	37,868	1,1	0,8	0,5	0,4			
262	223,2	3260	46,192		1,6		0,5				
316	384,4	8650	87,706		1,8		0,5				

¹⁾ When selecting the size, it is essential to observe the instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings". Short-term peak torque T_{kmax} is limited to 1.75 multiples of T_{KN}.

- 3) Pre-bore has free tolerance.
- 4) Maximum finished bore with keyways according to DIN 6885-1.
- 6) Weight and mass moments of inertia for pre-bored hubs.
- 7) The maximum misalignment values must not apply simultaneously. The instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings" are to be observed.

Explanations

T _{KN} HD	= Nom. transmissible torque with disc pack HD	D ₁	Max. outer diameterOuter diameter hub	Δ K_aHD = Max. permissible axial misalignment with disc pack HD
T _{KN} HT	= Nom. transmissible torque with disc pack HT	L ₂	= Hub flange thickness	Δ K _a HT = Max. permissible axial misalignment with disc pack HT
n _{max} d _{pre}	= Max. rotational speed= Diamater pre-bore	L S _D	= Total length = Disassembly space	Δ K_wHD = Max. permissible angular misalignment with disc pack HD
d _{1kmax}	·	n _{Sc} Gw _{SB}	= Quantity of screws= Weight at smallest bore diameter	Δ K_wHT = Max. permissible angular misalignment with disc pack HT
d _{2kmax}	= Max. bore diameter d ₂ with keyway acc. to DIN 6885-1	J_{SB}	= Moment of inertia at smallest bore diameter.	Δ K _r HD = Max. permissible radial misalignment with disc pack HD
C ₁	= Guided length in hub bore	C _{Tdyn} HD	D = Dynamic torsional stiffness with disc pack HD	Δ K _r HT = Max. permissible radial misalignment with disc pack HT
E	= Guided length in hub bore = Distance between hubs	C _{Tdyn} HT	 Dynamic torsional stiffness with disc pack HT 	
E H ₃	Distance between hubsWidth of the disc pack	Oldyn	•	

Ordering example

Туре	Size	Disc pack	Bore diameter d ₁	Bore diameter d ₂
TND HSH	118	HD	60	80

Further information on RINGFEDER® TND HSH on www.ringfeder.com

Technical Information

- Without further specifications, we deliver as standard: Bore tolerance H7; Keyway acc. to DIN 6885-1; Keyway width tolerance P9; Set screw per hub.
- From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.
- Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs are balanced half key (before grooving).

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.

EN Tech Paper 05.2022

Steel Disc Couplings RINGFEDER® TND HDH

Standard Hubs, Double-Jointed, with Spacer, Shaft-Hub Connection by Keyway

Size	T _{KN} HD ¹⁾	T _{KN} HT ¹⁾	n _{max} ²⁾	d _{pre} ³⁾	d _{1k} ;d _{2k} max ⁴⁾	C ₁ / C ₂	E ⁵⁾	H ₃	D ₁	D ₂	L ₂	L	S _D	n _{Sc}
HDH	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Quantity
	170	•••	10000			99.5	60		70.5		_	139		
47	170	230	12200	10	32	39,5	100 140	7,5	70,5	47	5	179 219	24	6
							70					160		
63	320	420	9900	14	42	45	80	9	88	62,5	8	170	32	6
03	320	420	9900	14	42	40	100	y	00	02,0	0	190	32	0
							140					230		
							100					210		
82	750	1050	7500	15	55	55	140	10,5	116	82	10	250	40	6
							180					290		
98	1350	1750	6200	19	65	60	100 140	40	140.5	98	11	220 260	47	
90	1330	1700	0200	19	00	OU	180	12	140,5	90	"	300	41	6
							100					250		
118	2400	3000	5250	25	85	75	140	13	166,5	118	12	290	55	6
							180					330		
	1000		****		0.5	20	140	45	400.5			320		
141	4000	5200	4400	30	95	90	180	15	198,5	141	14	360	64	6
							140					390		
169	6500	8500	3650	39	115	125	180	21	238	169	16	430	81	6
							250					500		

To continue see next page

EN Tech Paper 05.2022

Steel Disc Couplings RINGFEDER® TND HDH

Size	T _{KN} HD 1)	T _{KN} HT ¹⁾	n _{max} ²⁾	d _{pre} 3)	d _{1k} ;d _{2k} max ⁴⁾	C ₁ / C ₂	E ⁵⁾	Нз	D ₁	D ₂	L ₂	L	S _D	n _{Sc}
HDH	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Quantity
205	21000	26000	2950	59	140	160	200 250	28	295	205	22	520 570	112	8
254	36000	44000	2500	79	175	200	224 250 300	32,2	345	254	26	624 650 700	133	8
262	74000		2050	90	180	210	280	34	420	262	32	700	137	8
316	130000		1700	100	215	240	350	47	510	316	38	830	172	8

							Ma	x. Permissible	Misalignmer	nt ⁷⁾	
						ax	ial	ang	ular	rac	dial
Size	E 5)	Gw _{SB} 6)	J _{SB} ⁶⁾	C _{Tdyn} HD	C _{Tdyn} HT	$\Delta K_a HD$	ΔK_aHT	∆K _w HD	∆K _w HT	∆K _r HD	∆ K rHT
HDH	mm	kg	10 ⁻³ kgm ²	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm
	60	1,7	0,76	0,071	0,075					0,8	0,6
47	100	1,8	0,76	0,059	0,062	1,0	0,6	2	1,4	1,5	1,1
	140	1,9	0,76	0,071	0,075					2,2	1,5
	∆ per 100 mm	0,31	0,14	0,	14						
	70	3,3	2,5	0,126	0,139					1	0,7
63	80	3,3	2,6	0,123	0,134	1,0	0,8	2	1,4	1,1	0,8
03	100	3,5	2,7	0,116	0,127	1,0	0,0	2	1,4	1,5	1,1
	140	3,7	2,8	0,105	0,114					2,1	1,6
	∆ per 100 mm	0,55	0,44	0,	44						
	100	7,1	9,1	0,271	0,308					1,4	1,1
82	140	7,4	9,5	0,246	0,277	1,4	0,8	2	1,4	2,1	1,5
	180	7,7	9,9	0,226	0,251					2,8	2,1
	∆ per 100 mm	0,74	0,10	1,.	06						
	100	11,1	21	0,513	0,543					1,5	1
98	140	11,5	22	0,469	0,494	2,0	1,2	2	1,4	2,1	1,5
	180	12	23	0,433	0,454					2,8	2
	∆ per 100 mm	1,09	1,04	2,	18						
	100	18,9	52	0,914	0,948					1,4	1
118	140	19,6	54	0,855	0,884	2,4	1,6	2	1,4	2,1	1,5
	180	20,3	56	0,803	0,829					2,8	2
	∆ per 100 mm	1,74	5,14	5,.	24						
141	140	31,7	120	1,306	1,362	2,8	1,6	2	1,4	2	1,5
	180	32,5	130	1,229	1,279	2,0	.,0	_	.,.	2,7	2
	∆ per 100 mm	1,92	8,14	8,							
	140	60,2	340	2,467	3,035					2	1,4
169	180	61,8	350	2,375	2,898	3	2,4	2	1,4	2,6	1,9
	250	64,5	360	2,231	2,686					3,8	2,7
	∆ per 100 mm	3,92	24,88		36						
205	200	119,6	1070	8,995	9,142	2,2	1,2	1	0,8	1,4	1,2
255	250	122,4	1100	8,265	8,389	-,-	.,_	·	0,0	1,8	1,5
	∆ per 100 mm	5,56	49,36	50	7,3						

To continue see next page

Tech Paper

05.2022

Steel Disc Couplings RINGFEDER® TND HDH

						Max. Permissible Misalignment ⁷⁾						
						axial		angular		radial		
Size	E ⁵⁾	Gw _{SB} 6)	J _{SB} ⁶⁾	C _{Tdyn} HD	C _{Tdyn} HT	∆K _a HD	∆KaHT	∆K _w HD	∆K _w HT	∆K _r HD	∆K _r HT	
HDH	mm	kg	10 ⁻³ kgm ²	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm	
	224	207,5	2620	14,975	15,19					1,6	1,3	
254	250	209,5	2640	14,302	14,497	2,2	1,6	1	0,8	1,8	1,5	
	300	213,3	2680	13,163	13,328					2,2	1,8	
	∆ per 100 mm	7,58	80,10	81,	63							
262	280	261,9	5350	18,116		3,2		1		2,5		
	∆ per 100 mm	8,75	121,28	122	2,81							
316	350	450,1	14430	36,134		3,8		1		3		
	∆ per 100 mm	11,05	221,59	22	4,4							

- When selecting the size, it is essential to observe the instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings". Short-term peak torque T_{kmax} is limited to 1.75 multiples of T_{KN}.
- 2) For longer spacers, check bending critical rotational speed.
- 3) Pre-bore has free tolerance.
- 4) Maximum finished bore with keyways according to DIN 6885-1.
- 5) Longer spacers on request. The figures given at " Δ per 100 mm" for Gw_{SB}, J_{SB}, C_{Tdyn}HD and C_{Tdyn}HT are approximate values.
- 6) Weight and mass moments of inertia for pre-bored hubs.
- 7) The maximum misalignment values must not apply simultaneously. The instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings" are to be observed.

Explanations

$T_{KN}HD$	= Nom. transmissible torque with disc pack HD	D ₁	= Max. outer diameter	Δ K_aHD = Max. permissible axial misalignment with disc pack HD
	'	D_2	= Outer diameter hub	'
T _{KN} HT	= Nom. transmissible torque with	L ₂	= Hub flange thickness	$\Delta K_a HT = Max.$ permissible axial misalignment
	disc pack HT	L	= Total length	with disc pack HT
n _{max}	= Max. rotational speed	SD	= Disassembly space	$\Delta K_w HD = Max.$ permissible angular misalignment
d_{pre}	= Diamater pre-bore	_	, 1	with disc pack HD
d _{1kmax}	= Max. bore diameter d ₁ with keyway	nsc	= Quantity of screws	$\Delta K_w HT = Max.$ permissible angular misalignment
- IKIIIGX	acc. to DIN 6885-1	Gwsb	= Weight at smallest bore diameter	with disc pack HT
d _{2kmax}	= Max. bore diameter d ₂ with keyway acc. to DIN 6885-1	J _{SB}	= Moment of inertia at smallest bore diameter.	$\Delta K_r HD$ = Max. permissible radial misalignment with disc pack HD
C ₁	= Guided length in hub bore	C _{Tdyn} HE	D = Dynamic torsional stiffness	$\Delta K_r HT$ = Max. permissible radial misalignment
C ₂	= Guided length in hub bore		with disc pack HD	with disc pack HT
	· ·	$C_{Tdyn}HT$	T = Dynamic torsional stiffness	
E	= Distance between hubs		with disc pack HT	
H ₃	= Width of the disc pack			

Ordering example

Туре	Size	Disc pack	Distance between hubs E	Bore diameter d ₁	Bore diameter d ₂
TND HDH	118	HT	140	60	80

Further information on

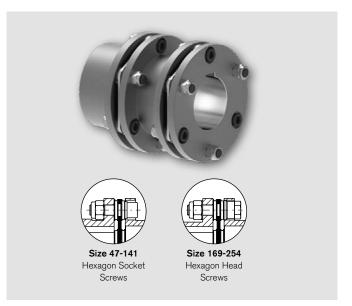
RINGFEDER® TND HDH on www.ringfeder.com

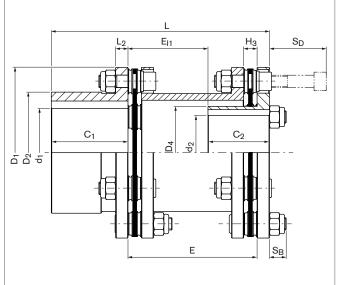
Technical Information

- Without further specifications, we deliver as standard: Bore tolerance H7; Keyway acc. to DIN 6885-1; Keyway width tolerance P9; Set screw per hub.
- From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.
- Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs are balanced half key (before grooving), the spacer without screwed-on disc packs.

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.




EN Tech Paper 05.2022

Steel Disc Couplings

RINGFEDER® TND HDV

Combination of Standard Hub and Inverted Hub, Double-Jointed, with Spacer, Shaft-Hub Connection by Keyway

Size	T _{KN} HD 1)	T _{KN} HT ¹⁾	n _{max} ²⁾	d _{pre} 3)	d _{1kmax} ⁴⁾	d _{2kmax} ⁴⁾	C ₁ /C ₂	E _{l1}	E ⁵⁾	H ₃	D ₁	D ₂	D ₄	L ₂	L	S _B	S _D	n _{Sc}
HDV	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Quantity
								25,5	60						105			
47	170	230	12200	10	32	25	39,5	65,5	100	7,5	70,5	47	37	5	145	7	24	6
								105,5	140						185			
								33	70						123			
63	320	420	9900	14	42	32	45	43	80	9	88	62,5	48	8	133	9	32	6
								63	100						153			
								103	140						193			
00	750	1050	7500	45		44	rr.	55	100	10.5	116		C4	10	165	11	40	
82	/50	1050	7500	15	55	44	55	95 135	140 180	10,5	IID	82	64	10	205 245	II	40	6
								51	100						171			
98	1350	1750	6200	19	65	50	60	91	140	12	140,5	98	77	11	211	15	47	6
30	1000	1100	0200	"	00	00	00	131	180	12	140,0	30			251	"	"	
								37	100						187			
118	2400	3000	5250	25	85	60	75	77	140	13	166,5	118	90,5	12	227	17	55	6
								117	180		,		,		267			
								64	140						244			_
141	4000	5200	4400	30	95	75	90	104	180	15	198,5	141	114	14	284	18	64	6
								31	140						281			
169	6500	8500	3650	39	115	90	125	71	180	21	238	169	135	16	321	24	81	6
								141	250						391			

To continue see next page

EN Tech Paper

05.2022

Steel Disc Couplings RINGFEDER® TND HDV

Size	T _{KN} HD 1)	T _{KN} HT ¹⁾	n _{max} ²⁾	d _{pre} 3)	d _{1kmax} ⁴⁾	d _{2kmax} ⁴⁾	C ₁ /C ₂	Elt	E ⁵⁾	Нз	D ₁	D ₂	D ₄	L ₂	L	SB	SD	n _{Sc}
HDV	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Quantity
205	21000	26000	26000 2950	59	140	115	160	62	200	28	295	205	170	22	382	27	112	8
203	21000							112	250						432		112	
								50	224						450			
254	36000	44000	2500	79	175	120	200	76	250	32,5	345	254	180	26	476	29	133	8
								126	300						526			

						Max. Permissible Misalignment ⁷⁾						
						ax	ial	ang	ular	rac	dial	
Size	E ⁵⁾	Gw _{SB} 6)	J _{SB} ⁶⁾	C _{Tdyn} HD	C _{Tdyn} HT	∆KaHD	∆KaHT	∆K _w HD	∆K _w HT	∆K _r HD	∆K _r HT	
HDV	mm	kg	10 ⁻³ kgm ²	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm	
	60	1,4	0,69	0,071	0,075					0,8	0,6	
47	100	1,6	0,75	0,059	0,062	1,0	0,6	2	1,4	1,5	1,1	
	140	1,7	0,8	0,051	0,053					2,2	1,5	
	70	2,9	2,33	0,123	0,134					1	0,7	
63	80	2,9	2,37	0,123	0,134	1,0	0,8	2	1,4	1,1	0,8	
00	100	3	2,46	0,116	0,127	1,0	0,0		1,4	1,5	1,1	
	140	3,2	2,63	0,105	0,114					2,1	1,6	
	100	5,4	8,83	0,271	0,308					1,4	1,1	
82	140	6,7	9,23	0,246	0,277	1,4	0,8	2	1,4	2,1	1,5	
	180	7	9,65	0,226	0,251					2,8	2,1	
	100	9,9	20,35	0,513	0,543					1,5	1	
98	140	10,4	21,21	0,469	0,494	2,0	1,2	2	1,4	2,1	1,5	
	180	10,8	22,07	0,433	0,454					2,8	2	
	100	16	46,28	0,914	0,948					1,4	1	
118	140	16,7	48,34	0,855	0,884	2,4	1,6	2	1,4	2,1	1,5	
	180	17,3	50,39	0,803	0,829					2,8	2	
141	140	26,4	98,01	1,306	1,362	2,8	1,6	2	1,4	2	1,5	
141	180	28,5	105,33	1,229	1,279	2,0	1,0	2	1,4	2,7	2	
	140	50,7	289,79	2,467	3,035					2	1,4	
169	180	52,3	299,74	2,375	2,898	3	2,4	2	1,4	2,6	1,9	
	250	55	317,15	2,231	2,686					3,8	2,7	
205	200	105	951,03	8,995	9,142	2,2	1,2	1	0,8	1,4	1,2	
ZUJ	250	107,8	975,71	8,265	8,389	2,2	1,2		0,0	1,8	1,5	
	224	169,2	2131,73	14,975	15,19					1,6	1,3	
254	250	171,2	2152,56	14,302	14,497	2,2	1,6	1	0,8	1,8	1,5	
	300	175	2192,61	13,163	13,328					2,2	1,8	

When selecting the size, it is essential to observe the instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings". Short-term peak torque T_{kmax} is limited to 1.75 multiples of T_{KN}.

To continue see next page

²⁾ For longer spacers, check bending critical rotational speed.

³⁾ Pre-bore has free tolerance.

⁴⁾ Maximum finished bore with keyways according to DIN 6885-1.

⁵⁾ Longer spacers on request.

⁶⁾ Weight and mass moments of inertia for pre-bored hubs.

⁷⁾ The maximum misalignment values must not apply simultaneously. The instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings" are to be observed.

Tech Paper

05.2022

Steel Disc Couplings RINGFEDER® TND HDV

Explanations

T_{KN}HD = Nom. transmissible torque with disc pack HD

T_{KN}HT = Nom. transmissible torque with disc pack HT

n_{max} = Max. rotational speed

 \mathbf{d}_{pre} = Diamater pre-bore \mathbf{d}_{1kmax} = Max. bore diameter \mathbf{d}_1 with keyway

acc. to DIN 6885-1

d_{2kmax} = Max. bore diameter d₂ with keyway

acc. to DIN 6885-1

C₁ = Guided length in hub boreC₂ = Guided length in hub bore

E_{I1} = Distance between hubs

E = Distance between hubs

H₃ = Width of the disc pack

D₁ = Max. outer diameter

D2 = Outer diameter hub

D₄ = Outer diameter of the inverted hub

L₂ = Hub flange thickness

L = Total length

 S_B = Protruding of the screw

S_D = Disassembly space

nsc = Quantity of screws

GwsB = Weight at smallest bore diameter

JsB = Moment of inertia at smallest bore

diameter

C_{Tdyn}HD = Dynamic torsional stiffness

with disc pack HD

C_{Tdyn}**HT** = Dynamic torsional stiffness with disc pack HT

Δ**K**_a**HD** = Max. permissible axial misalignment

with disc pack HD

 $\Delta K_a HT$ = Max. permissible axial misalignment

with disc pack HT

 $\Delta \textbf{K}_{\textbf{w}} \textbf{H} \textbf{D} \hspace{0.3cm} = \hspace{0.3cm} \text{Max. permissible angular misalignment}$

with disc pack HD

 $\Delta K_w HT$ = Max. permissible angular misalignment

with disc pack HT

 $\Delta K_r HD$ = Max. permissible radial misalignment

with disc pack HD

 $\Delta \textbf{K}_{\textbf{r}} \textbf{H} \textbf{T} \hspace{0.5cm} = \hspace{0.5cm} \text{Max. permissible radial misalignment}$

with disc pack HT

Ordering example

Туре	Size	Disc pack	Distance between hubs E	Bore diameter d ₁	Bore diameter d ₂
TND HDV	118	HD	140	85	60

Further information on

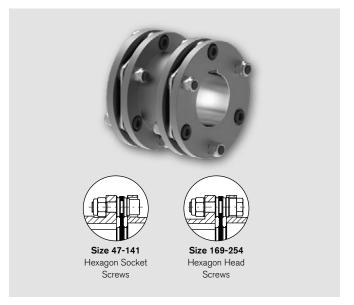
RINGFEDER® TND HDV on www.ringfeder.com

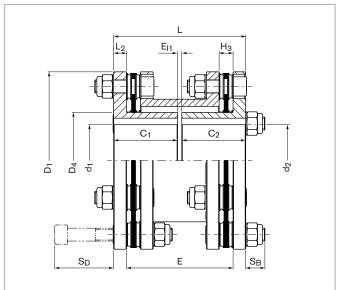
Technical Information

- Without further specifications, we deliver as standard: Bore tolerance H7; Keyway acc. to DIN 6885-1; Keyway width tolerance P9; Set screw per hub.
- From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.
- Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs are balanced half key (before grooving), the spacer without screwed-on disc packs.

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.





EN Tech Paper 05.2022

Steel Disc Couplings RINGFEDER® TND VDV

Inverted Hubs, Double-Jointed, with Spacer, Shaft-Hub Connection by Keyway

Size	T _{KN} HD ¹⁾	T _{KN} HT ¹⁾	n _{max} ²⁾	d _{pre} 3)	d _{1k} ;d _{2k} max ⁴⁾	C ₁ / C ₂	E _{l1}	E ⁵⁾	H ₃	D ₁	D ₄	L ₂	L	S _B	S _D	n _{Sc}
VDV	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Quantity
47	170	230	12200	10	25	33 39,5	4 31	60 100	7,5	70,5	37	5	70 110	7	24	6
63	320	420	9900	14	32	41 45	4	70 80	9	88	48	8	86 96	9	32	6
82	750	1050	7500	15	44	55 55	10 50	100 140	10,5	116	64	10	120 160	11	40	6
98	1350	1750	6200	19	50	59 60	4 42	100	12	140,5	77	11	122 162	15	47	6
118	2400	3000	5250	25	60	60 75	4	100	13	166,5	90,5	12	124 164	17	55	6
141	4000	5200	4400	30	75	81 90	6 28	140 180	15	198,5	114	14	168	18	64	6
169	6500	8500	3650	39	90	103 125	6 32	180 250	21	238	135	16	212 282	24	81	6
205	21000	26000	2950	59	115	142	10	250	28	295	170	22	294	27	112	8
254	36000	44000	2500	79	120	146 171	10 10	250 300	32,5	345	180	26	302 352	29	133	8

To continue see next page

EN

Tech Paper

05.2022

Steel Disc Couplings RINGFEDER® TND VDV

							Ma	x. Permissible	Misalignmer	nt ⁷⁾	
						ax	ial	ang	Jular	rac	dial
Size	E ⁵⁾	Gw _{SB} 6)	J _{SB} ⁶⁾	C _{Tdyn} HD	C _{Tdyn} HT	$\Delta K_a HD$	∆KaHT	∆K _w HD	∆K _w HT	$\Delta K_r HD$	ΔK_rHT
VDV	mm	kg	10 ⁻³ kgm ²	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm
47	60	1,2	0,6	0,071	0,075	1	0,6	2	1,4	0,8	0,6
41	100	1,4	0,66	0,059	0,062	'	0,0	2	1,4	1,5	1,1
63	70	2,4	2,04	0,126	0,139		0.0	,	1.4	1	0,7
03	80	2,5	2,08	0,126	0,139	1	0,8	2	1,4	1,1	0,8
82	100	5,7	7,90	0,271	0,308	1.4	0.0	2	1,4	1,4	1,1
02	140	6	8,32	0,246	0,277	1,4	0,8	2	1,4	2,1	1,5
98	100	8,8	18,36	0,513	0,543	2	1.0	,	1.4	1,5	1
90	140	9,2	19,22	0,469	0,494	2	1,2	2	1,4	2,1	1,5
118	100	13,1	39,38	0,914	0,948	0.4	1,6	2	1,4	1,4	1
110	140	13,8	41,44	0,855	0,884	2,4	1,0	2	1,4	2,1	1,5
141	140	22,6	100,41	1,306	1,362	0.0	1.0		1.4	2	1,5
141	180	24,7	105,33	1,229	1,279	2,8	1,6	2	1,4	2,7	2
169	180	43,5	256,20	2,375	2,898	3	2,4	2	1,4	2,6	1,9
109	250	46,2	273,61	2,231	2,686	J	Z,4	2	1,4	3,8	2,7
205	250	93,4	862,77	8,265	8,389	2,2	1,2	1	0,8	1,8	1,5
254	250	132,8	1734,93	14,302	14,497	0.0	1.0	1	0.0	1,8	1,5
204	300	136,6	1774,98	13,163	13,328	2,2	1,6	1	0,8	2,2	1,8

When selecting the size, it is essential to observe the instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings". Short-term peak torque T_{kmax} is limited to 1.75 multiples of T_{KN}.

To continue see next page

²⁾ For longer spacers, check bending critical rotational speed.

³⁾ Pre-bore has free tolerance.

⁴⁾ Maximum finished bore with keyways according to DIN 6885-1.

⁵⁾ Longer spacers on request.

⁶⁾ Weight and mass moments of inertia for pre-bored hubs.

⁷⁾ The maximum misalignment values must not apply simultaneously. The instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings" are to be observed.

05.2022

Steel Disc Couplings RINGFEDER® TND VDV

Explanations

T _{KN} HD	Nom. transmissible torque with disc pack HD	H₃ D₁	Width of the disc packMax. outer diameter	C _{Tdyn} HT	Dynamic torsional stiffness with disc pack HT
T _{KN} HT	 Nom. transmissible torque with disc pack HT 	D ₄	= Outer diameter of the inverted hub	$\Delta K_a HD$	 Max. permissible axial misalignment with disc pack HD
n _{max}	Max. rotational speedDiamater pre-bore	L ₂ L	Hub flange thicknessTotal length	∆KaHT	 Max. permissible axial misalignment with disc pack HT
	= Max. bore diameter d ₁ with keyway acc. to DIN 6885-1	S _B S _D	= Protruding of the screw= Disassembly space	$\Delta K_w HD$	= Max. permissible angular misalignment with disc pack HD
d _{2kmax}	acc. to DIN 6885-1	n _{Sc} Gw _{SB}	= Quantity of screws= Weight at smallest bore diameter	∆K _w HT	= Max. permissible angular misalignment with disc pack HT
C ₁	Guided length in hub boreGuided length in hub bore	J _{SB}	Moment of inertia at smallest bore diameter	$\Delta K_r HD$	Max. permissible radial misalignment with disc pack HD
E _{l1}	= Distance between hubs	C _{Tdyn} H[D = Dynamic torsional stiffness with disc pack HD	∆K _r HT	= Max. permissible radial misalignment with disc pack HT
E	= Distance between hubs				

Ordering example

Туре	Size	Disc pack	Distance between hubs E	Bore diameter d ₁	Bore diameter d ₂
TND VDV	118	HD	140	60	60

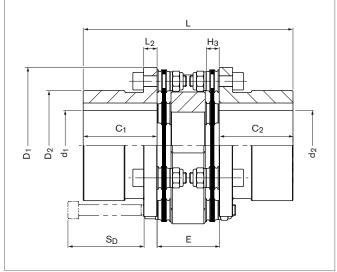
Further information on RINGFEDER® TND VDV on www.ringfeder.com

Technical Information

- Without further specifications, we deliver as standard: Bore tolerance H7; Keyway acc. to DIN 6885-1; Keyway width tolerance P9; Set screw per hub.
- From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.
- Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs are balanced half key (before grooving), the spacer without screwed-on disc packs.

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.



08.2021

Steel Disc Couplings RINGFEDER® TND OCO

Standard Hubs with Open Flange, Double-Jointed, with Compact-Spacer, Shaft-Hub Connection by Keyway

Size	T _{KN} HD ¹⁾	T _{KN} HT 1)	n _{max}	d _{pre} 3)	d _{1k} ;d _{2k} max ⁴⁾	C ₁ / C ₂	E	H ₃	D ₁	D_2	L ₂	L	S _D	n _{Sc}
осо	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Quantity
47	170	230	8400	10	32	39,5	31,2	7,5	70,5	47	5	110	24	6
63	320	420	6800	14	42	45	38	9	88	62,5	8	128	32	6
82	750	1050	5400	15	55	55	46,5	10,5	116	82	10	156,5	40	6
98	1350	1750	4600	19	65	60	55	12	140,5	98	11	175	47	6

					Max. Permissible Misalignment 7)						
					ax	ial	ang	ular	radial		
Size	GwsB 6)	J _{SB} ⁶⁾	C _{Tdyn} HD	C _{Tdyn} HT	∆KaHD	∆KaHT	ΔK_wHD	∆K _w HT	$\Delta K_r HD$	∆K _r HT	
осо	kg	10 ⁻³ kgm ²	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm	
47	1,6	0,71	0,084	0,089	0,9	0,5	2	1,4	0,3	0,2	
63	3,1	2,2	0,136	0,151	0,8	0,7	2	1,4	0,4	0,3	
82	6,7	8	0,309	0,360	1,4	0,6	2	1,4	0,5	0,4	
98	10,3	18	0,569	0,607	2	1	2	1,4	0,7	0,5	

¹⁾ When selecting the size, it is essential to observe the instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings". Short-term peak torque T_{kmax} is limited to 1.75 multiples of T_{KN}.

- 3) Pre-bore has free tolerance.
- 4) Maximum finished bore with keyways according to DIN 6885-1.
- 6) Weight and mass moments of inertia for pre-bored hubs.
- 7) The maximum misalignment values must not apply simultaneously. The instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings" are to be observed.

To continue see next page

08.2021

Steel Disc Couplings RINGFEDER® TND OCO

Explanations

T _{KN} HC	 Nom. transmissible torque with disc pack HD 	H₃ D₁	Width of the disc packMax. outer diameter	C _{Tdyn} HT	= Dynamic torsional stiffness with disc pack HT
T _{KN} HT	Nom. transmissible torque with disc pack HT	D ₂	= Outer diameter hub	∆K _a HD	 Max. permissible axial misalignment with disc pack HD
n _{max}	= Max. rotational speed= Diamater pre-bore	L ₂	Hub flange thicknessTotal length	∆K _a HT	= Max. permissible axial misalignment with disc pack HT
	= Max. bore diameter d ₁ with keyway acc. to DIN 6885-1	S _D n _{Sc}	Disassembly spaceQuantity of screws	$\Delta K_w HD$	 Max. permissible angular misalignment with disc pack HD
d _{2kmax}	= Max. bore diameter d ₂ with keyway acc. to DIN 6885-1	Gw _{SB} J _{SB}	Weight at smallest bore diameterMoment of inertia at smallest bore	∆K _w HT	= Max. permissible angular misalignment with disc pack HT
C ₁	= Guided length in hub bore	CtdvnHI	diameter. D = Dynamic torsional stiffness	$\Delta K_r HD$	 Max. permissible radial misalignment with disc pack HD
C ₂	= Guided length in hub bore= Distance between hubs	o ruyiii	with disc pack HD	∆ K _r HT	= Max. permissible radial misalignment with disc pack HT

Ordering example

Туре	Size	Disc pack	Bore diameter d ₁	Bore diameter d ₂
TND OCO	98	HD	50	60

Further information on RINGFEDER® TND OCO on www.ringfeder.com

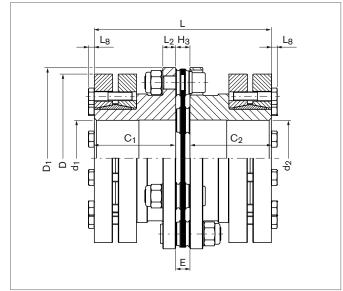
Technical Information

- Without further specifications, we deliver as standard: Bore tolerance H7; Keyway acc. to DIN 6885-1; Keyway width tolerance P9; Set screw per hub.
- From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.
- Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs are balanced half key (before grooving), the spacer without screwed-on disc packs.

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.




08.2021

Steel Disc Couplings

RINGFEDER® TND XSX

Hubs with RINGFEDER® Shrink Discs, Single-Jointed, without Spacer, Shaft-Hub Connection by Shrink Disc

Size	T _{KN} HD ¹⁾	T _{KN} HT ¹⁾	n _{max}	d ₁ ;d ₂ ³⁾ min	d ₁ ;d ₂ ³⁾ max	C ₁ / C ₂	E	H ₃	D ₁	L ₂	L	n _{Sc}
XSX	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	Quantity
82	750	1050	3600	38	60	55	10,5	10,5	116	10	120,5	6
98	1350	1750	3600	50	70	60	12	12	140,5	11	132	6
118	2400	3000	3600	50	75	75	13	13	166,5	12	163	6
141	4000	5200	3400	65	95	90	15	15	198,5	14	195	6
169	6500	8500	3000	65	105	125	21	21	238	16	271	6
205	21000	26000	2500	95	145	160	28	28	295	22	348	8
254	36000	44000	2100	95	160	200	32,5	32,5	345	26	432,5	8

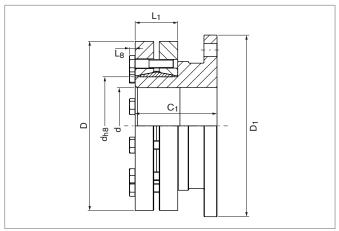
				Max. Permissible Misalignment 7)						
				ax	ial	ang	ular	radial		
Size	Gw _{sp}	C _{Tdyn} HD	C _{Tdyn} HT	$\Delta K_a HD$	∆KaHT	∆K _w HD	ΔK_wHT	$\Delta K_r HD$	ΔK_rHT	
xsx	kg	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm	
82	0,5	0,637	0,743	0,7	0,4	1	0,7			
98	0,85	1,173	1,251	1	0,6	1	0,7			
118	1,36	2	2,082	1,2	0,8	1	0,7			
141	2,096	2,992	3,142	1,4	0,8	1	0,7			
169	4,032	5,269	6,586	1,5	1,2	1	0,7			
205	10,903	21,848	22,285	1,1	0,6	0,5	0,4			
254	18,135	37,204	37,868	1,1	0,8	0,5	0,4			

¹⁾ When selecting the coupling size, it is essential to observe the instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings". Short-term peak torque T_{kmax} is limited to 1.75 multiples of T_{KN} or by the transmissible torque T of the shrink disc.

To continue see next page

³⁾ Bore tolerance H6 up to diameter 80 mm; Bore tolerance H7 from diameter 80 mm.

⁷⁾ The maximum misalignment values must not apply simultaneously. The instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings" are to be observed.



08.2021

Steel Disc Couplings RINGFEDER® TND XSX

Shaft-Hub Connection by Shrink Discs RINGFEDER® RfN 4061

		Sł	rink Discs R	INGFEDER®	RfN 4061			Sizing RINGFEDER® TND XSX					
d _{h8}	x	D	L ₁	L ₈	d	T	Size	D ₁	C ₁ / C ₂	T _{KN} HD 1)	T _{KN} HT 1)	n _{max}	Gw _{hs}
	mm		mm	mm	mm	Nm	XSX	mm	mm	Nm	Nm	1/min	kg
					38	1350							
50	X	90	27,5	4	40	1500	82	116	55	750	1050	3600	2,3
					42	1700							
					42	1300							
55	X	100	30,5	4	45	1550	82	116	55	750	1050	3600	2,4
					48	1800							
					48	1700	82	116	55	750	1050	3600	2,8
68	X	115	30,5	4	55	2250	98	140,5	60	1350	1750	3600	3,6
					60	2850	118	166,5	75	2400	3000	3600	5,8
					55	2650	98	140,5	60	1350	1750	3600	4,4
75	X	138	32,5	5,3	60	3300	118	166,5	75	2400	3000	3600	6,5
					65	4050	110	100,0		2100	0000	0000	0,0
					60	3200							
80	X	145	32,5	5,3	65	3900	98	140,5	60	1350	1750	3600	4,6
					70	4600							
					65	4800	118	166,5	75	2400	3000	3600	7,2
90	X	155	39	5,5	70	6050	141	198,5	90	4000	5200	3400	10,5
					75	7300	169	238	125	6500	8500	3000	19
					75	9100	141	198,5	90	4000	5200	3400	12,6
115	X	185	56	6,4	90	12100	169	238	125	6500	8500	3000	20
					95	14050							
					95	15100	169	238	125	6500	8500	3000	24,4
140	Х	230	60,5	7,5	100	17550	205	295	160	21000	26000	2500	40
					105	20000	254	345	200	36000	44000	2100	60
					105	25000	205	295	160	21000	26000	2500	48,8
165	X	290	71	10	120	35500	254	345	200	36000	44000	2100	69
					125	39400							
405		000	00.4	40	125	43500	205	295	160	21000	26000	2500	60,4
185	X	330	86,4	10	140	57350	254	345	200	36000	44000	2100	80
					145	62400							
000		250	or.	10	145	69000	054	045	000	96000	44000	0100	77.7
200	Х	350	86	10	155	81000	254	345	200	36000	44000	2100	77,7
					160	87200							

The transmissible torque of the coupling is dependent on the selected disc pack as well as the type of the shaft-hub connection. The lower torque limits the transmissibility and must be taken as a basis for the selection of the coupling.

08.2021

Steel Disc Couplings RINGFEDER® TND XSX

Explanations

T _{KN} HC	D = Nom. transmissible torque with disc pack HD	L ₂ L	Hub flange thicknessTotal length	∆K _w HT	Max. permissible angular misalignment with disc pack HT
T _{KN} HT	 Nom. transmissible torque with disc pack HT 	n _{Sc}	= Quantity of screws	$\Delta K_r HD$	 Max. permissible radial misalignment with disc pack HD
n _{max}	Max. rotational speedMin. bore diameter d₁	Gw _{sp} Gw _{hs}	Weight of spacerWeight of hub including shrink disc	ΔK_rHT	 Max. permissible radial misalignment with disc pack HT
d _{1min} d _{2min}	= Min. bore diameter d ₂	C _{Tdyn} HD	D = Dynamic torsional stiffness with disc pack HD	Ob. d. d	Discontinuity
d _{1max}	Max. bore diameter d₁Max. bore diameter d₂	C _{Tdyn} HT	= Dynamic torsional stiffness with disc pack HT	Snrini d _{h8}	k Disc Selection = Inner diameter
C ₁	= Guided length in hub bore	$\Delta K_a HD$	Max. permissible axial misalignment with disc pack HD	D L ₁	Outer diameterMin. installation length (without screws)
C ₂	= Guided length in hub bore= Distance between hubs	∆KaHT	= Max. permissible axial misalignment	L ₈	= Overhang length
H ₃	Width of the disc packMax. outer diameter	∆K _w HD	with disc pack HT = Max. permissible angular misalignment	d T	Solid shaft diameterTransmissible torque
			with disc pack HD		

Ordering example

Туре	Size	Disc pack	Bore diameter d ₁	Shrink Disc RfN 4061 for bore diameter d ₁	Bore diameter d ₂	Shrink Disc RfN 4061 for bore diameter d ₂
TND XSX	98	HD	50	68 x 115	60	68 x 115

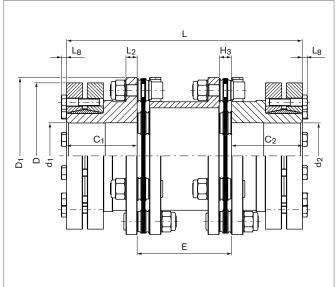
Further information on RINGFEDER® TND XSX on www.ringfeder.com

Technical Information

- The specified values for transmissible torques are valid as follows: Shaft tolerance h6 for shaft diameters up to 50 mm; Shaft tolerance g6 for shaft diameters from 50 mm; Surface quality $R_a \le 3.2 \mu m$.
- From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.
- Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs are balanced without screwed-on disc pack.

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.


EN Tech Paper 08.2021

Steel Disc Couplings

RINGFEDER® TND XDX

Hubs with RINGFEDER® Shrink Discs, Double-Jointed, with Spacer, Shaft-Hub Connection by Shrink Disc

Size	T _{KN} HD 1)	T _{KN} HT ¹⁾	n _{max} ²⁾	d ₁ ;d ₂ ³⁾ min	d ₁ ;d ₂ ³⁾ max	C ₁ / C ₂	E ⁵⁾	H ₃	D ₁	L ₂	L	n _{Sc}	L ₈
XDX	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	Quantity	mm
							100				210		
82	750	1050	3600	38	60	55	140	10,5	116	10	250	6	4
							180				290		
							100				220		
98	1350	1750	3600	50	70	60	140	12	140,5	11	260	6	5,3
							180				300		
							100				250		
118	2400	3000	3600	50	75	75	140	13	166,5	12	290	6	5,3
							180				330		
141	4000	5200	3400	65	95	90	140	15	198,5	14	320	6	7,5
	1000	0200	0100	00	00	00	180	10	100,0		360		1,0
							140				390		
169	6500	8500	3000	65	105	125	180	21	238	16	430	6	10
							250				500		
205	21000	26000	2500	95	145	160	200	28	295	22	520	8	10
200	21000	2000	2000	00	110	100	250	20	200		570		-10
							224				624		
254	36000	44000	2100	94	160	200	250	32,5	345	26	650	8	10
							300				700		

To continue see next page

EN

Tech Paper

08.2021

Steel Disc Couplings RINGFEDER® TND XDX

					Max. Permissible Misalignment ⁷⁾					
					ах	ial	ang	ular	rac	dial
Size	E ⁵⁾	Gw _{sp}	C _{Tdyn} HD	C _{Tdyn} HT	∆KaHD	ΔK_aHT	∆K _w HD	∆K _w HT	∆K _r HD	∆K _r HT
XDX	mm	kg	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm
	100	1,991	0,271	0,308					1,4	1,1
82	140	2,289	0,246	0,277	1,4	0,8	2	1,4	2,1	1,5
	180	2,586	0,226	0,251					2,8	2,1
	∆ per 100 mm	0,74	1,	06						
	100	3,188	0,513	0,543					1,5	1
98	140	3,627	0,469	0,494	2	1,2	2	1,4	2,1	1,5
	180	4,066	0,433	0,454					2,8	2
	∆ per 100 mm	1,09	2,	18						
	100	4,874	0,914	0,948					1,4	1
118	140	5,574	0,855	0,884	2,4	1,6	2	1,4	2,1	1,5
	180	6,275	0,803	0,829					2,8	2
	∆ per 100 mm	1,74	5,	24						
141	140	7,944	1,306	1,362	2,8	1,6	2	1,4	2	1,5
141	180	8,718	1,229	1,279	2,0	1,0		1,4	2,7	2
	∆ per 100 mm	1,92	8	3						
	140	14,179	2,467	3,035					2	1,4
169	180	15,757	2,375	2,898	3	2,4	2	1,4	2,6	1,9
	250	18,520	2,231	2,686					3,8	2,7
	∆ per 100 mm	3,92	25	36						
205	200	32,689	8,995	9,142	2,2	1,2	1	0,8	1,4	1,2
200	250	35,489	8,265	8,389	٤,٤	1,2	· ·	0,0	1,8	1,5
	∆ per 100 mm	5,56	50	7,3						
	224	54,420	14,975	15,19					1,6	1,3
254	250	56,404	14,302	14,497	2,2	1,6	1	0,8	1,8	1,5
	300	60,22	13,163	13,328						1,8
	∆ per 100 mm	7,58	81	,63						

¹⁾ When selecting the coupling size, it is essential to observe the instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings". Short-term peak torque T_{kmax} is limited to 1.75 multiples of T_{KN} or by the transmissible torque T of the shrink disc.

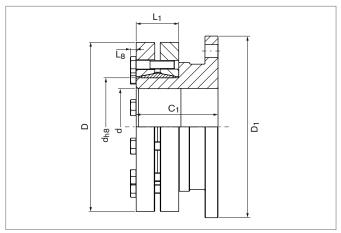
To continue see next page

²⁾ For longer spacers, check bending critical rotational speed.

³⁾ Bore tolerance H6 up to diameter 80 mm; Bore tolerance H7 from diameter 80 mm.

⁵⁾ Longer spacers on request. The figures given at " Δ per 100 mm" for Gw_{sp} , $C_{Tdyn}HD$ and $C_{Tdyn}HT$ are approximate values.

⁷⁾ The maximum misalignment values must not apply simultaneously. The instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings" are to be observed.



08.2021

Steel Disc Couplings RINGFEDER® TND XDX

Shaft-Hub Connection by Shrink Discs RINGFEDER® RfN 4061

		Sł	rink Discs R	INGFEDER®	RfN 4061		Sizing RINGFEDER® TND XDX							
d _{h8}	x	D	L ₁	L ₈	d	T	Size	D ₁	C ₁ / C ₂	T _{KN} HD 1)	T _{KN} HT 1)	n _{max}	Gw _{hs}	
	mm		mm	mm	mm	Nm	XDX	mm	mm	Nm	Nm	1/min	kg	
					38	1350								
50	X	90	27,5	4	40	1500	82	116	55	750	1050	3600	2,3	
					42	1700								
					42	1300								
55	X	100	30,5	4	45	1550	82	116	55	750	1050	3600	2,4	
					48	1800								
					48	1700	82	116	55	750	1050	3600	2,8	
68	X	115	30,5	4	55	2250	98	140,5	60	1350	1750	3600	3,6	
					60	2850	118	166,5	75	2400	3000	3600	5,8	
					55	2650	98	140,5	60	1350	1750	3600	4,4	
75	X	138	32,5	5,3	60	3300	118	166,5	75	2400	3000	3600	6,5	
					65	4050	110	100,0		2100	0000	0000	0,0	
					60	3200								
80	X	145	32,5	5,3	65	3900	98	140,5	60	1350	1750	3600	4,6	
					70	4600								
					65	4800	118	166,5	75	2400	3000	3600	7,2	
90	Х	155	39	5,5	70	6050	141	198,5	90	4000	5200	3400	10,5	
					75	7300	169	238	125	6500	8500	3000	19	
					75	9100	141	198,5	90	4000	5200	3400	12,6	
115	Х	185	56	6,4	90	12100	169	238	125	6500	8500	3000	20	
					95	14050								
					95	15100	169	238	125	6500	8500	3000	24,4	
140	Х	230	60,5	7,5	100	17550	205	295	160	21000	26000	2500	40	
					105	20000	254	345	200	36000	44000	2100	60	
					105	25000	205	295	160	21000	26000	2500	48,8	
165	Х	290	71	10	120	35500	254	345	200	36000	44000	2100	69	
					125	39400								
405				40	125	43500	205	295	160	21000	26000	2500	60,4	
185	Х	330	86,4	10	140	57350	254	345	200	36000	44000	2100	80	
					145	62400								
000		050	00	40	145	69000	054	045	000	00000	44000	0400		
200	X	350	86	10	155	81000	254	345	200	36000	44000	2100	77,7	
					160	87200								

The transmissible torque of the coupling is dependent on the selected disc pack as well as the type of the shaft-hub connection. The lower torque limits the transmissibility and must be taken as a basis for the selection of the coupling.

08.2021

Steel Disc Couplings RINGFEDER® TND XDX

Explanations

T _{KN} HC	Nom. transmissible torque with disc pack HD	L ₂ L	Hub flange thicknessTotal length	∆K _w HT	= Max. permissible angular misalignment with disc pack HT
T _{KN} HT	 Nom. transmissible torque with disc pack HT 	n _{Sc}	= Quantity of screws	$\Delta K_r HD$	 Max. permissible radial misalignment with disc pack HD
n _{max} d _{1min}	Max. rotational speedMin. bore diameter d₁	L ₈ Gw _{sp} Gw _{hs}	Overhang lengthWeight of spacerWeight of hub including shrink disc	∆K _r HT	= Max. permissible radial misalignment with disc pack HT
d _{2min} d _{1max}	Min. bore diameter d₂Max. bore diameter d₁		D = Dynamic torsional stiffness with disc pack HD		Disc Selection
d _{2max} C ₁	= Max. bore diameter d₂= Guided length in hub bore	C _{Tdyn} HT	Dynamic torsional stiffness with disc pack HT	d _{h8}	= Inner diameter = Outer diameter
C ₂ E	= Guided length in hub bore= Distance between hubs	∆KaHD	 Max. permissible axial misalignment with disc pack HD 	L ₁ L ₈	= Min. installation length (without screws)= Overhang length
H₃ D₁	Width of the disc packMax. outer diameter	∆K _a HT	 Max. permissible axial misalignment with disc pack HT 	d T	Solid shaft diameterTransmissible torque
		∆K _w HD	 Max. permissible angular misalignment with disc pack HD 		

Ordering example

Туре	Size	Disc pack	Distance between hubs E	Bore diameter d ₁	Shrink Disc RfN 4061 for bore diameter d ₁	Bore diameter d ₂	Shrink Disc RfN 4061 for bore diameter d ₂
TND XDX	98	HD	100	50	68 x 115	60	68 x 115

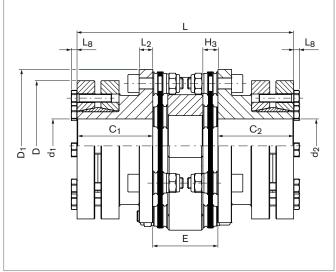
Further information on RINGFEDER® TND XDX on www.ringfeder.com

Technical Information

- The specified values for transmissible torques are valid as follows: Shaft tolerance h6 for shaft diameters up to 50 mm; Shaft tolerance g6 for shaft diameters from 50 mm; Surface quality $R_a \le 3.2 \mu m$.
- From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.
- Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs and the spacer are balanced without screwed-on disc packs.

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.


EN Tech Paper 08.2021

Steel Disc Couplings

RINGFEDER® TND QCQ

Hubs with Open Flange and RINGFEDER® Shrink Discs, Double-Jointed, with Compact-Spacer, Shaft-Hub Connection by Shrink Disc

Size	T _{KN} HD ¹⁾	T _{KN} HT ¹⁾	n _{max}	d ₁ ;d ₂ ³⁾ min	d ₁ ;d ₂ ³⁾ max	C ₁ / C ₂	E	H ₃	D ₁	L ₂	L	n _{Sc}	L ₈
aca	Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	Quantity	mm
82	750	1050	3600	38	65	55	46,5	10,5	116	10	156,5	6	5,3
98	1350	1750	3600	50	70	60	55	12	140,5	11	175	6	5,3

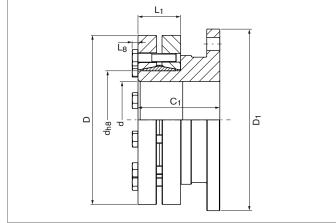
					Max. Permissible Misalignment ⁷⁾									
				ax	tial	ang	angular		ial					
Size	Gw _{sp}	C _{Tdyn} HD	C _{Tdyn} HT	∆K _a HD	∆KaHT	∆K _w HD	∆K _w HT	$\Delta K_r HD$	∆K _r HT					
aca	kg	10 ⁶ Nm/rad	10 ⁶ Nm/rad	mm	mm	Degrees	Degrees	mm	mm					
82	1,8	0,309	0,360	1,4	0,6	2	1,4	0,5	0,4					
98	2,9	0,569	0,607	2	1	2	1,4	0,7	0,5					

¹⁾ When selecting the coupling size, it is essential to observe the instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings". Short-term peak torque T_{kmax} is limited to 1.75 multiples of T_{KN} or by the transmissible torque T of the shrink disc.

To continue see next page

³⁾ Bore tolerance H6 up to diameter 80 mm; Bore tolerance H7 from diameter 80 mm.

⁷⁾ The maximum misalignment values must not apply simultaneously. The instructions on coupling dimensioning in the document "Product Paper & Tech Paper RINGFEDER® Steel Disc Couplings" are to be observed.



08.2021

Steel Disc Couplings RINGFEDER® TND QCQ

Shaft-Hub Connection by Shrink Discs RINGFEDER® RfN 4061

		Sł	rink Discs RI	INGFEDER®	RfN 4061		Sizing RINGFEDER® TND QCQ							
d _{h8}	х	D	L ₁	L ₈	d	Т	Size	D ₁	C ₁ / C ₂	T _{KN} HD 1)	T _{KN} HT 1)	n _{max}	Gw _{hs}	
	mm		mm	mm	mm	Nm	aca	mm	mm	Nm	Nm	1/min	kg	
					38	1350								
50	X	90	27,5	4	40	1500	82	116	55	750	1050	3600	2,2	
					42	1700								
					42	1300								
55	X	100	30,5	4	45	1550	82	116	55	750	1050	3600	2,3	
					48	1800								
					48	1700	82	116	55	750	1050	3600	2,7	
68	X	115	30,5	4	55	2250	98	140,5	60	1350	1750	3600	3,4	
					60	2850	30	140,0	00	1330	1730	3000	3,4	
					55	2650								
75	X	138	32,5	5,3	60	3300	98	140,5	60	1350	1750	3600	4,2	
					65	4050								
					60	3200								
80	X	145	32,5	5,3	65	3900	98	140,5	60	1350	1750	3600	4,4	
					70	4600								

The transmissible torque of the coupling is dependent on the selected disc pack as well as the type of the shaft-hub connection.

The lower torque limits the transmissibility and must be taken as a basis for the selection of the coupling.

To continue see next page

08.2021

Steel Disc Couplings RINGFEDER® TND QCQ

Explanations

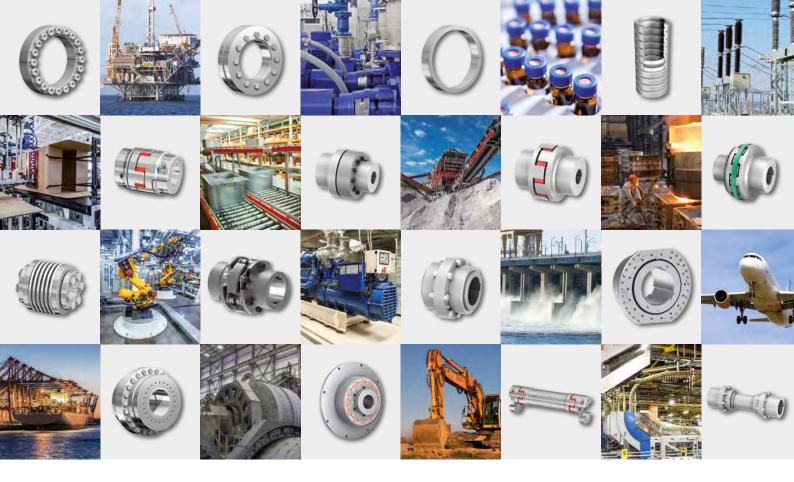
T _{KN} H[O = Nom. transmissible torque with disc pack HD	L ₂ L		Hub flange thickness Total length	∆ K _w HT	= Max. permissible angular misalignment with disc pack HT
T _{KN} HT	 Nom. transmissible torque with disc pack HT 	n _{Sc}		Quantity of screws	$\Delta K_r HD$	 Max. permissible radial misalignment with disc pack HD
n _{max}	Max. rotational speedMin. bore diameter d₁	L ₈ Gw _{sp}		Overhang length Weight of spacer	$\Delta K_r HT$	 Max. permissible radial misalignment with disc pack HT
d _{1min}	= Min. bore diameter d ₂	Gw _{hs}		Weight of hub including shrink disc Dynamic torsional stiffness		- · · · · · ·
d _{1max}	Max. bore diameter d₁Max. bore diameter d₂			with disc pack HD	Shrink d _{h8}	Disc Selection = Inner diameter
d _{2max}	= Max. bore diameter d ₂ = Guided length in hub bore	C _{Tdyn} HT	=	Dynamic torsional stiffness with disc pack HT	D	= Outer diameter
C ₂	Guided length in hub boreDistance between hubs	$\Delta K_a HD$	=	Max. permissible axial misalignment with disc pack HD	L ₁ L ₈	= Min. installation length (without screws)= Overhang length
H ₃	= Width of the disc pack	∆K _a HT	=	Max. permissible axial misalignment with disc pack HT	d T	= Solid shaft diameter
D ₁	= Max. outer diameter	∆K _w HD	=	Max. permissible angular misalignment with disc pack HD	1	= Transmissible torque

Ordering example

Туре	Size	Disc pack	Bore diameter d ₁	Shrink Disc RfN 4061 for bore diameter d ₁	Bore diameter d ₂	Shrink Disc RfN 4061 for bore diameter $ m d_2$
TND QCQ	98	HD	50	68 x 115	60	68 x 115

Further information on RINGFEDER® TND QCQ on www.ringfeder.com

Technical Information


- The specified values for transmissible torques are valid as follows: Shaft tolerance h6 for shaft diameters up to 50 mm; Shaft tolerance g6 for shaft diameters from 50 mm; Surface quality $R_a \le 3.2 \ \mu m$.
- From a peripheral speed of 30 m/s, separate balancing of the individual coupling parts is recommended.
- Without further instructions on balancing, the coupling parts are balanced individually according to DIN 21940-11 in quality G 6,3 at 1,500 1/min. The hubs and the spacer are balanced without screwed-on disc packs.

Disclaimer of liability

All technical details and notes are non-binding and cannot be used as a basis for legal claims. The user is obligated to determine whether the represented products meet his requirements. We reserve the right to carry out modifications at any time in the interests of technical progress.

RINGFEDER POWER TRANSMISSION GMBH

Werner-Heisenberg-Straße 18, 64823 Groß-Umstadt, Germany · Phone: +49 (0) 6078 9385-0 · Fax: +49 (0) 6078 9385-100 E-Mail: sales.international@ringfeder.com

Your sales partner:

TYMA CZ, s.r.o.
Na Pískách 731
CZ - 400 04 Trmice
Tel: +420 475 655 010
E-mail: info@tyma.cz

http: www.tyma.cz

Partner for Performance www.ringfeder.com

